Metamath Proof Explorer


Theorem 1nei

Description: The imaginary unit _i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion 1nei 1 ≠ i

Proof

Step Hyp Ref Expression
1 0ne2 0 ≠ 2
2 1 nesymi ¬ 2 = 0
3 oveq2 ( 1 = - 1 → ( 1 + 1 ) = ( 1 + - 1 ) )
4 1p1e2 ( 1 + 1 ) = 2
5 1pneg1e0 ( 1 + - 1 ) = 0
6 3 4 5 3eqtr3g ( 1 = - 1 → 2 = 0 )
7 2 6 mto ¬ 1 = - 1
8 id ( 1 = i → 1 = i )
9 8 8 oveq12d ( 1 = i → ( 1 · 1 ) = ( i · i ) )
10 1t1e1 ( 1 · 1 ) = 1
11 ixi ( i · i ) = - 1
12 9 10 11 3eqtr3g ( 1 = i → 1 = - 1 )
13 7 12 mto ¬ 1 = i
14 13 neir 1 ≠ i