Metamath Proof Explorer


Theorem 1neg1t1neg1

Description: An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Assertion 1neg1t1neg1 ( ๐‘ โˆˆ { - 1 , 1 } โ†’ ( ๐‘ ยท ๐‘ ) = 1 )

Proof

Step Hyp Ref Expression
1 elpri โŠข ( ๐‘ โˆˆ { - 1 , 1 } โ†’ ( ๐‘ = - 1 โˆจ ๐‘ = 1 ) )
2 id โŠข ( ๐‘ = - 1 โ†’ ๐‘ = - 1 )
3 2 2 oveq12d โŠข ( ๐‘ = - 1 โ†’ ( ๐‘ ยท ๐‘ ) = ( - 1 ยท - 1 ) )
4 neg1mulneg1e1 โŠข ( - 1 ยท - 1 ) = 1
5 3 4 eqtrdi โŠข ( ๐‘ = - 1 โ†’ ( ๐‘ ยท ๐‘ ) = 1 )
6 id โŠข ( ๐‘ = 1 โ†’ ๐‘ = 1 )
7 6 6 oveq12d โŠข ( ๐‘ = 1 โ†’ ( ๐‘ ยท ๐‘ ) = ( 1 ยท 1 ) )
8 1t1e1 โŠข ( 1 ยท 1 ) = 1
9 7 8 eqtrdi โŠข ( ๐‘ = 1 โ†’ ( ๐‘ ยท ๐‘ ) = 1 )
10 5 9 jaoi โŠข ( ( ๐‘ = - 1 โˆจ ๐‘ = 1 ) โ†’ ( ๐‘ ยท ๐‘ ) = 1 )
11 1 10 syl โŠข ( ๐‘ โˆˆ { - 1 , 1 } โ†’ ( ๐‘ ยท ๐‘ ) = 1 )