Metamath Proof Explorer


Theorem 1neg1t1neg1

Description: An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Assertion 1neg1t1neg1 ( 𝑁 ∈ { - 1 , 1 } → ( 𝑁 · 𝑁 ) = 1 )

Proof

Step Hyp Ref Expression
1 elpri ( 𝑁 ∈ { - 1 , 1 } → ( 𝑁 = - 1 ∨ 𝑁 = 1 ) )
2 id ( 𝑁 = - 1 → 𝑁 = - 1 )
3 2 2 oveq12d ( 𝑁 = - 1 → ( 𝑁 · 𝑁 ) = ( - 1 · - 1 ) )
4 neg1mulneg1e1 ( - 1 · - 1 ) = 1
5 3 4 eqtrdi ( 𝑁 = - 1 → ( 𝑁 · 𝑁 ) = 1 )
6 id ( 𝑁 = 1 → 𝑁 = 1 )
7 6 6 oveq12d ( 𝑁 = 1 → ( 𝑁 · 𝑁 ) = ( 1 · 1 ) )
8 1t1e1 ( 1 · 1 ) = 1
9 7 8 eqtrdi ( 𝑁 = 1 → ( 𝑁 · 𝑁 ) = 1 )
10 5 9 jaoi ( ( 𝑁 = - 1 ∨ 𝑁 = 1 ) → ( 𝑁 · 𝑁 ) = 1 )
11 1 10 syl ( 𝑁 ∈ { - 1 , 1 } → ( 𝑁 · 𝑁 ) = 1 )