Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|- ( N e. { -u 1 , 1 } -> ( N = -u 1 \/ N = 1 ) ) |
2 |
|
id |
|- ( N = -u 1 -> N = -u 1 ) |
3 |
2 2
|
oveq12d |
|- ( N = -u 1 -> ( N x. N ) = ( -u 1 x. -u 1 ) ) |
4 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
5 |
3 4
|
eqtrdi |
|- ( N = -u 1 -> ( N x. N ) = 1 ) |
6 |
|
id |
|- ( N = 1 -> N = 1 ) |
7 |
6 6
|
oveq12d |
|- ( N = 1 -> ( N x. N ) = ( 1 x. 1 ) ) |
8 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
9 |
7 8
|
eqtrdi |
|- ( N = 1 -> ( N x. N ) = 1 ) |
10 |
5 9
|
jaoi |
|- ( ( N = -u 1 \/ N = 1 ) -> ( N x. N ) = 1 ) |
11 |
1 10
|
syl |
|- ( N e. { -u 1 , 1 } -> ( N x. N ) = 1 ) |