| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( M e. NN /\ N e. NN0 ) -> N e. NN0 ) |
| 2 |
1
|
nn0cnd |
|- ( ( M e. NN /\ N e. NN0 ) -> N e. CC ) |
| 3 |
2
|
mullidd |
|- ( ( M e. NN /\ N e. NN0 ) -> ( 1 x. N ) = N ) |
| 4 |
|
1red |
|- ( ( M e. NN /\ N e. NN0 ) -> 1 e. RR ) |
| 5 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 6 |
5
|
adantr |
|- ( ( M e. NN /\ N e. NN0 ) -> M e. RR ) |
| 7 |
1
|
nn0red |
|- ( ( M e. NN /\ N e. NN0 ) -> N e. RR ) |
| 8 |
1
|
nn0ge0d |
|- ( ( M e. NN /\ N e. NN0 ) -> 0 <_ N ) |
| 9 |
|
nnge1 |
|- ( M e. NN -> 1 <_ M ) |
| 10 |
9
|
adantr |
|- ( ( M e. NN /\ N e. NN0 ) -> 1 <_ M ) |
| 11 |
4 6 7 8 10
|
lemul1ad |
|- ( ( M e. NN /\ N e. NN0 ) -> ( 1 x. N ) <_ ( M x. N ) ) |
| 12 |
3 11
|
eqbrtrrd |
|- ( ( M e. NN /\ N e. NN0 ) -> N <_ ( M x. N ) ) |