| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 2 |
1
|
nn0cnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 3 |
2
|
mullidd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 1 · 𝑁 ) = 𝑁 ) |
| 4 |
|
1red |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 5 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 7 |
1
|
nn0red |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 8 |
1
|
nn0ge0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
| 9 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ 𝑀 ) |
| 11 |
4 6 7 8 10
|
lemul1ad |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 1 · 𝑁 ) ≤ ( 𝑀 · 𝑁 ) ) |
| 12 |
3 11
|
eqbrtrrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑀 · 𝑁 ) ) |