Metamath Proof Explorer


Theorem nnmulge

Description: Multiplying by a positive integer M yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Assertion nnmulge MN0N M N

Proof

Step Hyp Ref Expression
1 simpr MN0N0
2 1 nn0cnd MN0N
3 2 mullidd MN01 N=N
4 1red MN01
5 nnre MM
6 5 adantr MN0M
7 1 nn0red MN0N
8 1 nn0ge0d MN00N
9 nnge1 M1M
10 9 adantr MN01M
11 4 6 7 8 10 lemul1ad MN01 N M N
12 3 11 eqbrtrrd MN0N M N