Metamath Proof Explorer


Theorem 1nei

Description: The imaginary unit _i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion 1nei
|- 1 =/= _i

Proof

Step Hyp Ref Expression
1 0ne2
 |-  0 =/= 2
2 1 nesymi
 |-  -. 2 = 0
3 oveq2
 |-  ( 1 = -u 1 -> ( 1 + 1 ) = ( 1 + -u 1 ) )
4 1p1e2
 |-  ( 1 + 1 ) = 2
5 1pneg1e0
 |-  ( 1 + -u 1 ) = 0
6 3 4 5 3eqtr3g
 |-  ( 1 = -u 1 -> 2 = 0 )
7 2 6 mto
 |-  -. 1 = -u 1
8 id
 |-  ( 1 = _i -> 1 = _i )
9 8 8 oveq12d
 |-  ( 1 = _i -> ( 1 x. 1 ) = ( _i x. _i ) )
10 1t1e1
 |-  ( 1 x. 1 ) = 1
11 ixi
 |-  ( _i x. _i ) = -u 1
12 9 10 11 3eqtr3g
 |-  ( 1 = _i -> 1 = -u 1 )
13 7 12 mto
 |-  -. 1 = _i
14 13 neir
 |-  1 =/= _i