Description: The imaginary unit _i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 1nei | |- 1 =/= _i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne2 | |- 0 =/= 2 |
|
2 | 1 | nesymi | |- -. 2 = 0 |
3 | oveq2 | |- ( 1 = -u 1 -> ( 1 + 1 ) = ( 1 + -u 1 ) ) |
|
4 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
5 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
6 | 3 4 5 | 3eqtr3g | |- ( 1 = -u 1 -> 2 = 0 ) |
7 | 2 6 | mto | |- -. 1 = -u 1 |
8 | id | |- ( 1 = _i -> 1 = _i ) |
|
9 | 8 8 | oveq12d | |- ( 1 = _i -> ( 1 x. 1 ) = ( _i x. _i ) ) |
10 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
11 | ixi | |- ( _i x. _i ) = -u 1 |
|
12 | 9 10 11 | 3eqtr3g | |- ( 1 = _i -> 1 = -u 1 ) |
13 | 7 12 | mto | |- -. 1 = _i |
14 | 13 | neir | |- 1 =/= _i |