Metamath Proof Explorer


Theorem 1nei

Description: The imaginary unit _i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion 1nei 1 i

Proof

Step Hyp Ref Expression
1 0ne2 0 2
2 1 nesymi ¬ 2 = 0
3 oveq2 1 = 1 1 + 1 = 1 + -1
4 1p1e2 1 + 1 = 2
5 1pneg1e0 1 + -1 = 0
6 3 4 5 3eqtr3g 1 = 1 2 = 0
7 2 6 mto ¬ 1 = 1
8 id 1 = i 1 = i
9 8 8 oveq12d 1 = i 1 1 = i i
10 1t1e1 1 1 = 1
11 ixi i i = 1
12 9 10 11 3eqtr3g 1 = i 1 = 1
13 7 12 mto ¬ 1 = i
14 13 neir 1 i