Metamath Proof Explorer


Theorem 1nei

Description: The imaginary unit _i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion 1nei 1i

Proof

Step Hyp Ref Expression
1 0ne2 02
2 1 nesymi ¬2=0
3 oveq2 1=11+1=1+-1
4 1p1e2 1+1=2
5 1pneg1e0 1+-1=0
6 3 4 5 3eqtr3g 1=12=0
7 2 6 mto ¬1=1
8 id 1=i1=i
9 8 8 oveq12d 1=i11=ii
10 1t1e1 11=1
11 ixi ii=1
12 9 10 11 3eqtr3g 1=i1=1
13 7 12 mto ¬1=i
14 13 neir 1i