Step |
Hyp |
Ref |
Expression |
1 |
|
fldextress |
|- ( E /FldExt F -> F = ( E |`s ( Base ` F ) ) ) |
2 |
1
|
fveq2d |
|- ( E /FldExt F -> ( chr ` F ) = ( chr ` ( E |`s ( Base ` F ) ) ) ) |
3 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
4 |
3
|
fldextsubrg |
|- ( E /FldExt F -> ( Base ` F ) e. ( SubRing ` E ) ) |
5 |
|
subrgchr |
|- ( ( Base ` F ) e. ( SubRing ` E ) -> ( chr ` ( E |`s ( Base ` F ) ) ) = ( chr ` E ) ) |
6 |
4 5
|
syl |
|- ( E /FldExt F -> ( chr ` ( E |`s ( Base ` F ) ) ) = ( chr ` E ) ) |
7 |
2 6
|
eqtrd |
|- ( E /FldExt F -> ( chr ` F ) = ( chr ` E ) ) |