Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fldgencl.1 |
|- B = ( Base ` E ) |
2 |
|
evls1fldgencl.2 |
|- O = ( E evalSub1 F ) |
3 |
|
evls1fldgencl.3 |
|- P = ( Poly1 ` ( E |`s F ) ) |
4 |
|
evls1fldgencl.4 |
|- U = ( Base ` P ) |
5 |
|
evls1fldgencl.5 |
|- ( ph -> E e. Field ) |
6 |
|
evls1fldgencl.6 |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
evls1fldgencl.7 |
|- ( ph -> A e. B ) |
8 |
|
evls1fldgencl.8 |
|- ( ph -> G e. U ) |
9 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
10 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
11 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
12 |
6 11
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
13 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
14 |
|
eqid |
|- ( .g ` ( mulGrp ` E ) ) = ( .g ` ( mulGrp ` E ) ) |
15 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
16 |
2 1 3 9 4 10 12 8 13 14 15
|
evls1fpws |
|- ( ph -> ( O ` G ) = ( x e. B |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) ) |
17 |
|
oveq2 |
|- ( x = A -> ( k ( .g ` ( mulGrp ` E ) ) x ) = ( k ( .g ` ( mulGrp ` E ) ) A ) ) |
18 |
17
|
oveq2d |
|- ( x = A -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) = ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) |
19 |
18
|
mpteq2dv |
|- ( x = A -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) = ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) |
20 |
19
|
oveq2d |
|- ( x = A -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) ) |
21 |
20
|
adantl |
|- ( ( ph /\ x = A ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) ) |
22 |
|
ovexd |
|- ( ph -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) e. _V ) |
23 |
16 21 7 22
|
fvmptd |
|- ( ph -> ( ( O ` G ) ` A ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( O ` G ) ` A ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) ) |
25 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
26 |
10
|
crngringd |
|- ( ph -> E e. Ring ) |
27 |
26
|
ringabld |
|- ( ph -> E e. Abel ) |
28 |
27
|
ad2antrr |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> E e. Abel ) |
29 |
|
nn0ex |
|- NN0 e. _V |
30 |
29
|
a1i |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> NN0 e. _V ) |
31 |
|
simplr |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> a e. ( SubDRing ` E ) ) |
32 |
|
sdrgsubrg |
|- ( a e. ( SubDRing ` E ) -> a e. ( SubRing ` E ) ) |
33 |
|
subrgsubg |
|- ( a e. ( SubRing ` E ) -> a e. ( SubGrp ` E ) ) |
34 |
31 32 33
|
3syl |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> a e. ( SubGrp ` E ) ) |
35 |
32
|
ad3antlr |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> a e. ( SubRing ` E ) ) |
36 |
|
simplr |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( F u. { A } ) C_ a ) |
37 |
36
|
unssad |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> F C_ a ) |
38 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> G e. U ) |
39 |
|
simpr |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> k e. NN0 ) |
40 |
|
eqid |
|- ( Base ` ( E |`s F ) ) = ( Base ` ( E |`s F ) ) |
41 |
15 4 3 40
|
coe1fvalcl |
|- ( ( G e. U /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. ( Base ` ( E |`s F ) ) ) |
42 |
38 39 41
|
syl2anc |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. ( Base ` ( E |`s F ) ) ) |
43 |
1
|
sdrgss |
|- ( F e. ( SubDRing ` E ) -> F C_ B ) |
44 |
6 43
|
syl |
|- ( ph -> F C_ B ) |
45 |
9 1
|
ressbas2 |
|- ( F C_ B -> F = ( Base ` ( E |`s F ) ) ) |
46 |
44 45
|
syl |
|- ( ph -> F = ( Base ` ( E |`s F ) ) ) |
47 |
46
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> F = ( Base ` ( E |`s F ) ) ) |
48 |
42 47
|
eleqtrrd |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. F ) |
49 |
37 48
|
sseldd |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. a ) |
50 |
|
simpllr |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> a e. ( SubDRing ` E ) ) |
51 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> A e. B ) |
52 |
36
|
unssbd |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> { A } C_ a ) |
53 |
|
snssg |
|- ( A e. B -> ( A e. a <-> { A } C_ a ) ) |
54 |
53
|
biimpar |
|- ( ( A e. B /\ { A } C_ a ) -> A e. a ) |
55 |
51 52 54
|
syl2anc |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> A e. a ) |
56 |
|
eqid |
|- ( mulGrp ` E ) = ( mulGrp ` E ) |
57 |
56 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` E ) ) |
58 |
56 13
|
mgpplusg |
|- ( .r ` E ) = ( +g ` ( mulGrp ` E ) ) |
59 |
|
fvexd |
|- ( a e. ( SubDRing ` E ) -> ( mulGrp ` E ) e. _V ) |
60 |
1
|
sdrgss |
|- ( a e. ( SubDRing ` E ) -> a C_ B ) |
61 |
13
|
subrgmcl |
|- ( ( a e. ( SubRing ` E ) /\ x e. a /\ y e. a ) -> ( x ( .r ` E ) y ) e. a ) |
62 |
32 61
|
syl3an1 |
|- ( ( a e. ( SubDRing ` E ) /\ x e. a /\ y e. a ) -> ( x ( .r ` E ) y ) e. a ) |
63 |
|
eqid |
|- ( 0g ` ( mulGrp ` E ) ) = ( 0g ` ( mulGrp ` E ) ) |
64 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
65 |
56 64
|
ringidval |
|- ( 1r ` E ) = ( 0g ` ( mulGrp ` E ) ) |
66 |
65
|
eqcomi |
|- ( 0g ` ( mulGrp ` E ) ) = ( 1r ` E ) |
67 |
66
|
subrg1cl |
|- ( a e. ( SubRing ` E ) -> ( 0g ` ( mulGrp ` E ) ) e. a ) |
68 |
32 67
|
syl |
|- ( a e. ( SubDRing ` E ) -> ( 0g ` ( mulGrp ` E ) ) e. a ) |
69 |
57 14 58 59 60 62 63 68
|
mulgnn0subcl |
|- ( ( a e. ( SubDRing ` E ) /\ k e. NN0 /\ A e. a ) -> ( k ( .g ` ( mulGrp ` E ) ) A ) e. a ) |
70 |
50 39 55 69
|
syl3anc |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` E ) ) A ) e. a ) |
71 |
13
|
subrgmcl |
|- ( ( a e. ( SubRing ` E ) /\ ( ( coe1 ` G ) ` k ) e. a /\ ( k ( .g ` ( mulGrp ` E ) ) A ) e. a ) -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) e. a ) |
72 |
35 49 70 71
|
syl3anc |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) e. a ) |
73 |
72
|
fmpttd |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) : NN0 --> a ) |
74 |
30
|
mptexd |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) e. _V ) |
75 |
73
|
ffund |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> Fun ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) |
76 |
|
fvexd |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( 0g ` E ) e. _V ) |
77 |
9
|
subrgring |
|- ( F e. ( SubRing ` E ) -> ( E |`s F ) e. Ring ) |
78 |
12 77
|
syl |
|- ( ph -> ( E |`s F ) e. Ring ) |
79 |
78
|
ad2antrr |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( E |`s F ) e. Ring ) |
80 |
8
|
ad2antrr |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> G e. U ) |
81 |
|
eqid |
|- ( 0g ` ( E |`s F ) ) = ( 0g ` ( E |`s F ) ) |
82 |
3 4 81
|
mptcoe1fsupp |
|- ( ( ( E |`s F ) e. Ring /\ G e. U ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) finSupp ( 0g ` ( E |`s F ) ) ) |
83 |
79 80 82
|
syl2anc |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) finSupp ( 0g ` ( E |`s F ) ) ) |
84 |
|
ringmnd |
|- ( E e. Ring -> E e. Mnd ) |
85 |
26 84
|
syl |
|- ( ph -> E e. Mnd ) |
86 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
87 |
|
subgsubm |
|- ( F e. ( SubGrp ` E ) -> F e. ( SubMnd ` E ) ) |
88 |
25
|
subm0cl |
|- ( F e. ( SubMnd ` E ) -> ( 0g ` E ) e. F ) |
89 |
12 86 87 88
|
4syl |
|- ( ph -> ( 0g ` E ) e. F ) |
90 |
9 1 25
|
ress0g |
|- ( ( E e. Mnd /\ ( 0g ` E ) e. F /\ F C_ B ) -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) ) |
91 |
85 89 44 90
|
syl3anc |
|- ( ph -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) ) |
92 |
91
|
ad2antrr |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) ) |
93 |
83 92
|
breqtrrd |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) finSupp ( 0g ` E ) ) |
94 |
93
|
fsuppimpd |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) e. Fin ) |
95 |
|
fveq2 |
|- ( k = i -> ( ( coe1 ` G ) ` k ) = ( ( coe1 ` G ) ` i ) ) |
96 |
|
oveq1 |
|- ( k = i -> ( k ( .g ` ( mulGrp ` E ) ) A ) = ( i ( .g ` ( mulGrp ` E ) ) A ) ) |
97 |
95 96
|
oveq12d |
|- ( k = i -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) = ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) ) |
98 |
97
|
cbvmptv |
|- ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) = ( i e. NN0 |-> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) ) |
99 |
|
nfv |
|- F/ k ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) |
100 |
|
eqid |
|- ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) = ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) |
101 |
99 42 100
|
fnmptd |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) Fn NN0 ) |
102 |
|
simplr |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> i e. NN0 ) |
103 |
|
fvexd |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( coe1 ` G ) ` i ) e. _V ) |
104 |
100 95 102 103
|
fvmptd3 |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( ( coe1 ` G ) ` i ) ) |
105 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) |
106 |
104 105
|
eqtr3d |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( coe1 ` G ) ` i ) = ( 0g ` E ) ) |
107 |
106
|
oveq1d |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( ( 0g ` E ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) ) |
108 |
26
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> E e. Ring ) |
109 |
56
|
ringmgp |
|- ( E e. Ring -> ( mulGrp ` E ) e. Mnd ) |
110 |
26 109
|
syl |
|- ( ph -> ( mulGrp ` E ) e. Mnd ) |
111 |
110
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( mulGrp ` E ) e. Mnd ) |
112 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> A e. B ) |
113 |
57 14 111 102 112
|
mulgnn0cld |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( i ( .g ` ( mulGrp ` E ) ) A ) e. B ) |
114 |
1 13 25 108 113
|
ringlzd |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( 0g ` E ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( 0g ` E ) ) |
115 |
107 114
|
eqtrd |
|- ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( 0g ` E ) ) |
116 |
115
|
3impa |
|- ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( 0g ` E ) ) |
117 |
98 30 76 101 116
|
suppss3 |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) supp ( 0g ` E ) ) C_ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) ) |
118 |
|
suppssfifsupp |
|- ( ( ( ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) /\ ( 0g ` E ) e. _V ) /\ ( ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) e. Fin /\ ( ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) supp ( 0g ` E ) ) C_ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) finSupp ( 0g ` E ) ) |
119 |
74 75 76 94 117 118
|
syl32anc |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) finSupp ( 0g ` E ) ) |
120 |
25 28 30 34 73 119
|
gsumsubgcl |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) e. a ) |
121 |
24 120
|
eqeltrd |
|- ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( O ` G ) ` A ) e. a ) |
122 |
121
|
ex |
|- ( ( ph /\ a e. ( SubDRing ` E ) ) -> ( ( F u. { A } ) C_ a -> ( ( O ` G ) ` A ) e. a ) ) |
123 |
122
|
ralrimiva |
|- ( ph -> A. a e. ( SubDRing ` E ) ( ( F u. { A } ) C_ a -> ( ( O ` G ) ` A ) e. a ) ) |
124 |
|
fvex |
|- ( ( O ` G ) ` A ) e. _V |
125 |
124
|
elintrab |
|- ( ( ( O ` G ) ` A ) e. |^| { a e. ( SubDRing ` E ) | ( F u. { A } ) C_ a } <-> A. a e. ( SubDRing ` E ) ( ( F u. { A } ) C_ a -> ( ( O ` G ) ` A ) e. a ) ) |
126 |
123 125
|
sylibr |
|- ( ph -> ( ( O ` G ) ` A ) e. |^| { a e. ( SubDRing ` E ) | ( F u. { A } ) C_ a } ) |
127 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
128 |
7
|
snssd |
|- ( ph -> { A } C_ B ) |
129 |
44 128
|
unssd |
|- ( ph -> ( F u. { A } ) C_ B ) |
130 |
1 127 129
|
fldgenval |
|- ( ph -> ( E fldGen ( F u. { A } ) ) = |^| { a e. ( SubDRing ` E ) | ( F u. { A } ) C_ a } ) |
131 |
126 130
|
eleqtrrd |
|- ( ph -> ( ( O ` G ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |