Metamath Proof Explorer


Theorem evls1fldgencl

Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses evls1fldgencl.1
|- B = ( Base ` E )
evls1fldgencl.2
|- O = ( E evalSub1 F )
evls1fldgencl.3
|- P = ( Poly1 ` ( E |`s F ) )
evls1fldgencl.4
|- U = ( Base ` P )
evls1fldgencl.5
|- ( ph -> E e. Field )
evls1fldgencl.6
|- ( ph -> F e. ( SubDRing ` E ) )
evls1fldgencl.7
|- ( ph -> A e. B )
evls1fldgencl.8
|- ( ph -> G e. U )
Assertion evls1fldgencl
|- ( ph -> ( ( O ` G ) ` A ) e. ( E fldGen ( F u. { A } ) ) )

Proof

Step Hyp Ref Expression
1 evls1fldgencl.1
 |-  B = ( Base ` E )
2 evls1fldgencl.2
 |-  O = ( E evalSub1 F )
3 evls1fldgencl.3
 |-  P = ( Poly1 ` ( E |`s F ) )
4 evls1fldgencl.4
 |-  U = ( Base ` P )
5 evls1fldgencl.5
 |-  ( ph -> E e. Field )
6 evls1fldgencl.6
 |-  ( ph -> F e. ( SubDRing ` E ) )
7 evls1fldgencl.7
 |-  ( ph -> A e. B )
8 evls1fldgencl.8
 |-  ( ph -> G e. U )
9 eqid
 |-  ( E |`s F ) = ( E |`s F )
10 5 fldcrngd
 |-  ( ph -> E e. CRing )
11 sdrgsubrg
 |-  ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) )
12 6 11 syl
 |-  ( ph -> F e. ( SubRing ` E ) )
13 eqid
 |-  ( .r ` E ) = ( .r ` E )
14 eqid
 |-  ( .g ` ( mulGrp ` E ) ) = ( .g ` ( mulGrp ` E ) )
15 eqid
 |-  ( coe1 ` G ) = ( coe1 ` G )
16 2 1 3 9 4 10 12 8 13 14 15 evls1fpws
 |-  ( ph -> ( O ` G ) = ( x e. B |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) )
17 oveq2
 |-  ( x = A -> ( k ( .g ` ( mulGrp ` E ) ) x ) = ( k ( .g ` ( mulGrp ` E ) ) A ) )
18 17 oveq2d
 |-  ( x = A -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) = ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) )
19 18 mpteq2dv
 |-  ( x = A -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) = ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) )
20 19 oveq2d
 |-  ( x = A -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) )
21 20 adantl
 |-  ( ( ph /\ x = A ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) )
22 ovexd
 |-  ( ph -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) e. _V )
23 16 21 7 22 fvmptd
 |-  ( ph -> ( ( O ` G ) ` A ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) )
24 23 ad2antrr
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( O ` G ) ` A ) = ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) )
25 eqid
 |-  ( 0g ` E ) = ( 0g ` E )
26 10 crngringd
 |-  ( ph -> E e. Ring )
27 26 ringabld
 |-  ( ph -> E e. Abel )
28 27 ad2antrr
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> E e. Abel )
29 nn0ex
 |-  NN0 e. _V
30 29 a1i
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> NN0 e. _V )
31 simplr
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> a e. ( SubDRing ` E ) )
32 sdrgsubrg
 |-  ( a e. ( SubDRing ` E ) -> a e. ( SubRing ` E ) )
33 subrgsubg
 |-  ( a e. ( SubRing ` E ) -> a e. ( SubGrp ` E ) )
34 31 32 33 3syl
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> a e. ( SubGrp ` E ) )
35 32 ad3antlr
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> a e. ( SubRing ` E ) )
36 simplr
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( F u. { A } ) C_ a )
37 36 unssad
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> F C_ a )
38 8 ad3antrrr
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> G e. U )
39 simpr
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> k e. NN0 )
40 eqid
 |-  ( Base ` ( E |`s F ) ) = ( Base ` ( E |`s F ) )
41 15 4 3 40 coe1fvalcl
 |-  ( ( G e. U /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. ( Base ` ( E |`s F ) ) )
42 38 39 41 syl2anc
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. ( Base ` ( E |`s F ) ) )
43 1 sdrgss
 |-  ( F e. ( SubDRing ` E ) -> F C_ B )
44 6 43 syl
 |-  ( ph -> F C_ B )
45 9 1 ressbas2
 |-  ( F C_ B -> F = ( Base ` ( E |`s F ) ) )
46 44 45 syl
 |-  ( ph -> F = ( Base ` ( E |`s F ) ) )
47 46 ad3antrrr
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> F = ( Base ` ( E |`s F ) ) )
48 42 47 eleqtrrd
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. F )
49 37 48 sseldd
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( coe1 ` G ) ` k ) e. a )
50 simpllr
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> a e. ( SubDRing ` E ) )
51 7 ad3antrrr
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> A e. B )
52 36 unssbd
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> { A } C_ a )
53 snssg
 |-  ( A e. B -> ( A e. a <-> { A } C_ a ) )
54 53 biimpar
 |-  ( ( A e. B /\ { A } C_ a ) -> A e. a )
55 51 52 54 syl2anc
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> A e. a )
56 eqid
 |-  ( mulGrp ` E ) = ( mulGrp ` E )
57 56 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` E ) )
58 56 13 mgpplusg
 |-  ( .r ` E ) = ( +g ` ( mulGrp ` E ) )
59 fvexd
 |-  ( a e. ( SubDRing ` E ) -> ( mulGrp ` E ) e. _V )
60 1 sdrgss
 |-  ( a e. ( SubDRing ` E ) -> a C_ B )
61 13 subrgmcl
 |-  ( ( a e. ( SubRing ` E ) /\ x e. a /\ y e. a ) -> ( x ( .r ` E ) y ) e. a )
62 32 61 syl3an1
 |-  ( ( a e. ( SubDRing ` E ) /\ x e. a /\ y e. a ) -> ( x ( .r ` E ) y ) e. a )
63 eqid
 |-  ( 0g ` ( mulGrp ` E ) ) = ( 0g ` ( mulGrp ` E ) )
64 eqid
 |-  ( 1r ` E ) = ( 1r ` E )
65 56 64 ringidval
 |-  ( 1r ` E ) = ( 0g ` ( mulGrp ` E ) )
66 65 eqcomi
 |-  ( 0g ` ( mulGrp ` E ) ) = ( 1r ` E )
67 66 subrg1cl
 |-  ( a e. ( SubRing ` E ) -> ( 0g ` ( mulGrp ` E ) ) e. a )
68 32 67 syl
 |-  ( a e. ( SubDRing ` E ) -> ( 0g ` ( mulGrp ` E ) ) e. a )
69 57 14 58 59 60 62 63 68 mulgnn0subcl
 |-  ( ( a e. ( SubDRing ` E ) /\ k e. NN0 /\ A e. a ) -> ( k ( .g ` ( mulGrp ` E ) ) A ) e. a )
70 50 39 55 69 syl3anc
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` E ) ) A ) e. a )
71 13 subrgmcl
 |-  ( ( a e. ( SubRing ` E ) /\ ( ( coe1 ` G ) ` k ) e. a /\ ( k ( .g ` ( mulGrp ` E ) ) A ) e. a ) -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) e. a )
72 35 49 70 71 syl3anc
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ k e. NN0 ) -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) e. a )
73 72 fmpttd
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) : NN0 --> a )
74 30 mptexd
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) e. _V )
75 73 ffund
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> Fun ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) )
76 fvexd
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( 0g ` E ) e. _V )
77 9 subrgring
 |-  ( F e. ( SubRing ` E ) -> ( E |`s F ) e. Ring )
78 12 77 syl
 |-  ( ph -> ( E |`s F ) e. Ring )
79 78 ad2antrr
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( E |`s F ) e. Ring )
80 8 ad2antrr
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> G e. U )
81 eqid
 |-  ( 0g ` ( E |`s F ) ) = ( 0g ` ( E |`s F ) )
82 3 4 81 mptcoe1fsupp
 |-  ( ( ( E |`s F ) e. Ring /\ G e. U ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) finSupp ( 0g ` ( E |`s F ) ) )
83 79 80 82 syl2anc
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) finSupp ( 0g ` ( E |`s F ) ) )
84 ringmnd
 |-  ( E e. Ring -> E e. Mnd )
85 26 84 syl
 |-  ( ph -> E e. Mnd )
86 subrgsubg
 |-  ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) )
87 subgsubm
 |-  ( F e. ( SubGrp ` E ) -> F e. ( SubMnd ` E ) )
88 25 subm0cl
 |-  ( F e. ( SubMnd ` E ) -> ( 0g ` E ) e. F )
89 12 86 87 88 4syl
 |-  ( ph -> ( 0g ` E ) e. F )
90 9 1 25 ress0g
 |-  ( ( E e. Mnd /\ ( 0g ` E ) e. F /\ F C_ B ) -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) )
91 85 89 44 90 syl3anc
 |-  ( ph -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) )
92 91 ad2antrr
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) )
93 83 92 breqtrrd
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) finSupp ( 0g ` E ) )
94 93 fsuppimpd
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) e. Fin )
95 fveq2
 |-  ( k = i -> ( ( coe1 ` G ) ` k ) = ( ( coe1 ` G ) ` i ) )
96 oveq1
 |-  ( k = i -> ( k ( .g ` ( mulGrp ` E ) ) A ) = ( i ( .g ` ( mulGrp ` E ) ) A ) )
97 95 96 oveq12d
 |-  ( k = i -> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) = ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) )
98 97 cbvmptv
 |-  ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) = ( i e. NN0 |-> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) )
99 nfv
 |-  F/ k ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a )
100 eqid
 |-  ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) = ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) )
101 99 42 100 fnmptd
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) Fn NN0 )
102 simplr
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> i e. NN0 )
103 fvexd
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( coe1 ` G ) ` i ) e. _V )
104 100 95 102 103 fvmptd3
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( ( coe1 ` G ) ` i ) )
105 simpr
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) )
106 104 105 eqtr3d
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( coe1 ` G ) ` i ) = ( 0g ` E ) )
107 106 oveq1d
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( ( 0g ` E ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) )
108 26 ad4antr
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> E e. Ring )
109 56 ringmgp
 |-  ( E e. Ring -> ( mulGrp ` E ) e. Mnd )
110 26 109 syl
 |-  ( ph -> ( mulGrp ` E ) e. Mnd )
111 110 ad4antr
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( mulGrp ` E ) e. Mnd )
112 7 ad4antr
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> A e. B )
113 57 14 111 102 112 mulgnn0cld
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( i ( .g ` ( mulGrp ` E ) ) A ) e. B )
114 1 13 25 108 113 ringlzd
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( 0g ` E ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( 0g ` E ) )
115 107 114 eqtrd
 |-  ( ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 ) /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( 0g ` E ) )
116 115 3impa
 |-  ( ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) /\ i e. NN0 /\ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) ` i ) = ( 0g ` E ) ) -> ( ( ( coe1 ` G ) ` i ) ( .r ` E ) ( i ( .g ` ( mulGrp ` E ) ) A ) ) = ( 0g ` E ) )
117 98 30 76 101 116 suppss3
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) supp ( 0g ` E ) ) C_ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) )
118 suppssfifsupp
 |-  ( ( ( ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) /\ ( 0g ` E ) e. _V ) /\ ( ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) e. Fin /\ ( ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) supp ( 0g ` E ) ) C_ ( ( k e. NN0 |-> ( ( coe1 ` G ) ` k ) ) supp ( 0g ` E ) ) ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) finSupp ( 0g ` E ) )
119 74 75 76 94 117 118 syl32anc
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) finSupp ( 0g ` E ) )
120 25 28 30 34 73 119 gsumsubgcl
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` G ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) A ) ) ) ) e. a )
121 24 120 eqeltrd
 |-  ( ( ( ph /\ a e. ( SubDRing ` E ) ) /\ ( F u. { A } ) C_ a ) -> ( ( O ` G ) ` A ) e. a )
122 121 ex
 |-  ( ( ph /\ a e. ( SubDRing ` E ) ) -> ( ( F u. { A } ) C_ a -> ( ( O ` G ) ` A ) e. a ) )
123 122 ralrimiva
 |-  ( ph -> A. a e. ( SubDRing ` E ) ( ( F u. { A } ) C_ a -> ( ( O ` G ) ` A ) e. a ) )
124 fvex
 |-  ( ( O ` G ) ` A ) e. _V
125 124 elintrab
 |-  ( ( ( O ` G ) ` A ) e. |^| { a e. ( SubDRing ` E ) | ( F u. { A } ) C_ a } <-> A. a e. ( SubDRing ` E ) ( ( F u. { A } ) C_ a -> ( ( O ` G ) ` A ) e. a ) )
126 123 125 sylibr
 |-  ( ph -> ( ( O ` G ) ` A ) e. |^| { a e. ( SubDRing ` E ) | ( F u. { A } ) C_ a } )
127 5 flddrngd
 |-  ( ph -> E e. DivRing )
128 7 snssd
 |-  ( ph -> { A } C_ B )
129 44 128 unssd
 |-  ( ph -> ( F u. { A } ) C_ B )
130 1 127 129 fldgenval
 |-  ( ph -> ( E fldGen ( F u. { A } ) ) = |^| { a e. ( SubDRing ` E ) | ( F u. { A } ) C_ a } )
131 126 130 eleqtrrd
 |-  ( ph -> ( ( O ` G ) ` A ) e. ( E fldGen ( F u. { A } ) ) )