Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl.q |
|- Q = ( S evalSub1 R ) |
2 |
|
ressply1evl.k |
|- K = ( Base ` S ) |
3 |
|
ressply1evl.w |
|- W = ( Poly1 ` U ) |
4 |
|
ressply1evl.u |
|- U = ( S |`s R ) |
5 |
|
ressply1evl.b |
|- B = ( Base ` W ) |
6 |
|
evls1fpws.s |
|- ( ph -> S e. CRing ) |
7 |
|
evls1fpws.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
8 |
|
evls1fpws.y |
|- ( ph -> M e. B ) |
9 |
|
evls1fpws.1 |
|- .x. = ( .r ` S ) |
10 |
|
evls1fpws.2 |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
11 |
|
evls1fpws.a |
|- A = ( coe1 ` M ) |
12 |
4
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
13 |
7 12
|
syl |
|- ( ph -> U e. Ring ) |
14 |
|
eqid |
|- ( var1 ` U ) = ( var1 ` U ) |
15 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
16 |
|
eqid |
|- ( mulGrp ` W ) = ( mulGrp ` W ) |
17 |
|
eqid |
|- ( .g ` ( mulGrp ` W ) ) = ( .g ` ( mulGrp ` W ) ) |
18 |
3 14 5 15 16 17 11
|
ply1coe |
|- ( ( U e. Ring /\ M e. B ) -> M = ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) |
19 |
13 8 18
|
syl2anc |
|- ( ph -> M = ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) |
20 |
19
|
fveq2d |
|- ( ph -> ( Q ` M ) = ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) ) |
21 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
22 |
|
eqid |
|- ( S ^s K ) = ( S ^s K ) |
23 |
3
|
ply1lmod |
|- ( U e. Ring -> W e. LMod ) |
24 |
13 23
|
syl |
|- ( ph -> W e. LMod ) |
25 |
24
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> W e. LMod ) |
26 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
27 |
11 5 3 26
|
coe1fvalcl |
|- ( ( M e. B /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` U ) ) |
28 |
8 27
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` U ) ) |
29 |
3
|
ply1sca |
|- ( U e. Ring -> U = ( Scalar ` W ) ) |
30 |
13 29
|
syl |
|- ( ph -> U = ( Scalar ` W ) ) |
31 |
30
|
fveq2d |
|- ( ph -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
33 |
28 32
|
eleqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
34 |
16 5
|
mgpbas |
|- B = ( Base ` ( mulGrp ` W ) ) |
35 |
3
|
ply1ring |
|- ( U e. Ring -> W e. Ring ) |
36 |
13 35
|
syl |
|- ( ph -> W e. Ring ) |
37 |
36
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> W e. Ring ) |
38 |
16
|
ringmgp |
|- ( W e. Ring -> ( mulGrp ` W ) e. Mnd ) |
39 |
37 38
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` W ) e. Mnd ) |
40 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
41 |
13
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> U e. Ring ) |
42 |
14 3 5
|
vr1cl |
|- ( U e. Ring -> ( var1 ` U ) e. B ) |
43 |
41 42
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( var1 ` U ) e. B ) |
44 |
34 17 39 40 43
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
45 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
46 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
47 |
5 45 15 46
|
lmodvscl |
|- ( ( W e. LMod /\ ( A ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. B ) |
48 |
25 33 44 47
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. B ) |
49 |
|
ssidd |
|- ( ph -> NN0 C_ NN0 ) |
50 |
|
fvexd |
|- ( ph -> ( 0g ` W ) e. _V ) |
51 |
|
fveq2 |
|- ( k = j -> ( A ` k ) = ( A ` j ) ) |
52 |
|
oveq1 |
|- ( k = j -> ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) = ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) |
53 |
51 52
|
oveq12d |
|- ( k = j -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
54 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
55 |
11 5 3 54
|
coe1ae0 |
|- ( M e. B -> E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) ) |
56 |
8 55
|
syl |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) ) |
57 |
|
simpr |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( A ` j ) = ( 0g ` U ) ) |
58 |
30
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> U = ( Scalar ` W ) ) |
59 |
58
|
fveq2d |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( 0g ` U ) = ( 0g ` ( Scalar ` W ) ) ) |
60 |
57 59
|
eqtrd |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( A ` j ) = ( 0g ` ( Scalar ` W ) ) ) |
61 |
60
|
oveq1d |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
62 |
24
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> W e. LMod ) |
63 |
36 38
|
syl |
|- ( ph -> ( mulGrp ` W ) e. Mnd ) |
64 |
63
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( mulGrp ` W ) e. Mnd ) |
65 |
|
simpr |
|- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
66 |
13 42
|
syl |
|- ( ph -> ( var1 ` U ) e. B ) |
67 |
66
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( var1 ` U ) e. B ) |
68 |
34 17 64 65 67
|
mulgnn0cld |
|- ( ( ph /\ j e. NN0 ) -> ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
69 |
68
|
ad4ant13 |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
70 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
71 |
5 45 15 70 21
|
lmod0vs |
|- ( ( W e. LMod /\ ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
72 |
62 69 71
|
syl2anc |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
73 |
61 72
|
eqtrd |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
74 |
73
|
ex |
|- ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( A ` j ) = ( 0g ` U ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) |
75 |
74
|
imim2d |
|- ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
76 |
75
|
ralimdva |
|- ( ( ph /\ i e. NN0 ) -> ( A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
77 |
76
|
reximdva |
|- ( ph -> ( E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
78 |
56 77
|
mpd |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) |
79 |
50 48 53 78
|
mptnn0fsuppd |
|- ( ph -> ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) finSupp ( 0g ` W ) ) |
80 |
1 2 3 21 4 22 5 6 7 48 49 79
|
evls1gsumadd |
|- ( ph -> ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( ( S ^s K ) gsum ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) ) |
81 |
1 2 22 4 3
|
evls1rhm |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
82 |
6 7 81
|
syl2anc |
|- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
83 |
82
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
84 |
|
eqid |
|- ( algSc ` W ) = ( algSc ` W ) |
85 |
84 45 36 24 46 5
|
asclf |
|- ( ph -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> B ) |
86 |
85
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> B ) |
87 |
86 33
|
ffvelcdmd |
|- ( ( ph /\ k e. NN0 ) -> ( ( algSc ` W ) ` ( A ` k ) ) e. B ) |
88 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
89 |
|
eqid |
|- ( .r ` ( S ^s K ) ) = ( .r ` ( S ^s K ) ) |
90 |
5 88 89
|
rhmmul |
|- ( ( Q e. ( W RingHom ( S ^s K ) ) /\ ( ( algSc ` W ) ` ( A ` k ) ) e. B /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
91 |
83 87 44 90
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
92 |
4
|
subrgcrng |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
93 |
6 7 92
|
syl2anc |
|- ( ph -> U e. CRing ) |
94 |
3
|
ply1assa |
|- ( U e. CRing -> W e. AssAlg ) |
95 |
93 94
|
syl |
|- ( ph -> W e. AssAlg ) |
96 |
95
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> W e. AssAlg ) |
97 |
84 45 46 5 88 15
|
asclmul1 |
|- ( ( W e. AssAlg /\ ( A ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
98 |
96 33 44 97
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
99 |
98
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
100 |
|
eqid |
|- ( Base ` ( S ^s K ) ) = ( Base ` ( S ^s K ) ) |
101 |
6
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> S e. CRing ) |
102 |
2
|
fvexi |
|- K e. _V |
103 |
102
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> K e. _V ) |
104 |
5 100
|
rhmf |
|- ( Q e. ( W RingHom ( S ^s K ) ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
105 |
83 104
|
syl |
|- ( ( ph /\ k e. NN0 ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
106 |
105 87
|
ffvelcdmd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) e. ( Base ` ( S ^s K ) ) ) |
107 |
105 44
|
ffvelcdmd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. ( Base ` ( S ^s K ) ) ) |
108 |
22 100 101 103 106 107 9 89
|
pwsmulrval |
|- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) oF .x. ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
109 |
22 2 100 101 103 106
|
pwselbas |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) : K --> K ) |
110 |
109
|
ffnd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) Fn K ) |
111 |
22 2 100 101 103 107
|
pwselbas |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) : K --> K ) |
112 |
111
|
ffnd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) Fn K ) |
113 |
|
inidm |
|- ( K i^i K ) = K |
114 |
6
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> S e. CRing ) |
115 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> R e. ( SubRing ` S ) ) |
116 |
2
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ K ) |
117 |
7 116
|
syl |
|- ( ph -> R C_ K ) |
118 |
4 2
|
ressbas2 |
|- ( R C_ K -> R = ( Base ` U ) ) |
119 |
117 118
|
syl |
|- ( ph -> R = ( Base ` U ) ) |
120 |
119
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R = ( Base ` U ) ) |
121 |
28 120
|
eleqtrrd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. R ) |
122 |
121
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( A ` k ) e. R ) |
123 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> x e. K ) |
124 |
1 3 4 2 84 114 115 122 123
|
evls1scafv |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ` x ) = ( A ` k ) ) |
125 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> k e. NN0 ) |
126 |
1 4 3 14 2 17 10 114 115 125 123
|
evls1varpwval |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ` x ) = ( k .^ x ) ) |
127 |
110 112 103 103 113 124 126
|
offval |
|- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) oF .x. ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
128 |
108 127
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
129 |
91 99 128
|
3eqtr3d |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
130 |
129
|
mpteq2dva |
|- ( ph -> ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) = ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) |
131 |
130
|
oveq2d |
|- ( ph -> ( ( S ^s K ) gsum ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( ( S ^s K ) gsum ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
132 |
|
eqid |
|- ( 0g ` ( S ^s K ) ) = ( 0g ` ( S ^s K ) ) |
133 |
102
|
a1i |
|- ( ph -> K e. _V ) |
134 |
|
nn0ex |
|- NN0 e. _V |
135 |
134
|
a1i |
|- ( ph -> NN0 e. _V ) |
136 |
6
|
crngringd |
|- ( ph -> S e. Ring ) |
137 |
136
|
ringcmnd |
|- ( ph -> S e. CMnd ) |
138 |
136
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> S e. Ring ) |
139 |
7
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R e. ( SubRing ` S ) ) |
140 |
139 116
|
syl |
|- ( ( ph /\ k e. NN0 ) -> R C_ K ) |
141 |
140 121
|
sseldd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. K ) |
142 |
141
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( A ` k ) e. K ) |
143 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
144 |
143 2
|
mgpbas |
|- K = ( Base ` ( mulGrp ` S ) ) |
145 |
143
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
146 |
136 145
|
syl |
|- ( ph -> ( mulGrp ` S ) e. Mnd ) |
147 |
146
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( mulGrp ` S ) e. Mnd ) |
148 |
144 10 147 125 123
|
mulgnn0cld |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( k .^ x ) e. K ) |
149 |
2 9 138 142 148
|
ringcld |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
150 |
149
|
3impa |
|- ( ( ph /\ k e. NN0 /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
151 |
150
|
3com23 |
|- ( ( ph /\ x e. K /\ k e. NN0 ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
152 |
151
|
3expb |
|- ( ( ph /\ ( x e. K /\ k e. NN0 ) ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
153 |
135
|
mptexd |
|- ( ph -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) e. _V ) |
154 |
|
funmpt |
|- Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
155 |
154
|
a1i |
|- ( ph -> Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) |
156 |
|
fvexd |
|- ( ph -> ( 0g ` ( S ^s K ) ) e. _V ) |
157 |
11 5 3 54
|
coe1sfi |
|- ( M e. B -> A finSupp ( 0g ` U ) ) |
158 |
8 157
|
syl |
|- ( ph -> A finSupp ( 0g ` U ) ) |
159 |
158
|
fsuppimpd |
|- ( ph -> ( A supp ( 0g ` U ) ) e. Fin ) |
160 |
11 5 3 26
|
coe1f |
|- ( M e. B -> A : NN0 --> ( Base ` U ) ) |
161 |
8 160
|
syl |
|- ( ph -> A : NN0 --> ( Base ` U ) ) |
162 |
161
|
ffnd |
|- ( ph -> A Fn NN0 ) |
163 |
162
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> A Fn NN0 ) |
164 |
134
|
a1i |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> NN0 e. _V ) |
165 |
|
fvexd |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( 0g ` U ) e. _V ) |
166 |
|
simpr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) |
167 |
163 164 165 166
|
fvdifsupp |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( A ` k ) = ( 0g ` U ) ) |
168 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
169 |
4 168
|
subrg0 |
|- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
170 |
7 169
|
syl |
|- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
171 |
170
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( 0g ` S ) = ( 0g ` U ) ) |
172 |
167 171
|
eqtr4d |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( A ` k ) = ( 0g ` S ) ) |
173 |
172
|
adantr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( A ` k ) = ( 0g ` S ) ) |
174 |
173
|
oveq1d |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) = ( ( 0g ` S ) .x. ( k .^ x ) ) ) |
175 |
136
|
ad2antrr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> S e. Ring ) |
176 |
175 145
|
syl |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( mulGrp ` S ) e. Mnd ) |
177 |
|
simplr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) |
178 |
177
|
eldifad |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> k e. NN0 ) |
179 |
|
simpr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> x e. K ) |
180 |
144 10 176 178 179
|
mulgnn0cld |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( k .^ x ) e. K ) |
181 |
2 9 168
|
ringlz |
|- ( ( S e. Ring /\ ( k .^ x ) e. K ) -> ( ( 0g ` S ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
182 |
175 180 181
|
syl2anc |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( 0g ` S ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
183 |
174 182
|
eqtrd |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
184 |
183
|
mpteq2dva |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( x e. K |-> ( 0g ` S ) ) ) |
185 |
|
fconstmpt |
|- ( K X. { ( 0g ` S ) } ) = ( x e. K |-> ( 0g ` S ) ) |
186 |
184 185
|
eqtr4di |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( K X. { ( 0g ` S ) } ) ) |
187 |
137
|
cmnmndd |
|- ( ph -> S e. Mnd ) |
188 |
22 168
|
pws0g |
|- ( ( S e. Mnd /\ K e. _V ) -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
189 |
187 133 188
|
syl2anc |
|- ( ph -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
190 |
189
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
191 |
186 190
|
eqtrd |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( 0g ` ( S ^s K ) ) ) |
192 |
191 135
|
suppss2 |
|- ( ph -> ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) supp ( 0g ` ( S ^s K ) ) ) C_ ( A supp ( 0g ` U ) ) ) |
193 |
|
suppssfifsupp |
|- ( ( ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) /\ ( 0g ` ( S ^s K ) ) e. _V ) /\ ( ( A supp ( 0g ` U ) ) e. Fin /\ ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) supp ( 0g ` ( S ^s K ) ) ) C_ ( A supp ( 0g ` U ) ) ) ) -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) finSupp ( 0g ` ( S ^s K ) ) ) |
194 |
153 155 156 159 192 193
|
syl32anc |
|- ( ph -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) finSupp ( 0g ` ( S ^s K ) ) ) |
195 |
22 2 132 133 135 137 152 194
|
pwsgsum |
|- ( ph -> ( ( S ^s K ) gsum ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
196 |
80 131 195
|
3eqtrd |
|- ( ph -> ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
197 |
20 196
|
eqtrd |
|- ( ph -> ( Q ` M ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |