| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply1evl2.q |
|- Q = ( S evalSub1 R ) |
| 2 |
|
ressply1evl2.k |
|- K = ( Base ` S ) |
| 3 |
|
ressply1evl2.w |
|- W = ( Poly1 ` U ) |
| 4 |
|
ressply1evl2.u |
|- U = ( S |`s R ) |
| 5 |
|
ressply1evl2.b |
|- B = ( Base ` W ) |
| 6 |
|
evls1fpws.s |
|- ( ph -> S e. CRing ) |
| 7 |
|
evls1fpws.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 8 |
|
evls1fpws.y |
|- ( ph -> M e. B ) |
| 9 |
|
evls1fpws.1 |
|- .x. = ( .r ` S ) |
| 10 |
|
evls1fpws.2 |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
| 11 |
|
evls1fpws.a |
|- A = ( coe1 ` M ) |
| 12 |
4
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 13 |
7 12
|
syl |
|- ( ph -> U e. Ring ) |
| 14 |
|
eqid |
|- ( var1 ` U ) = ( var1 ` U ) |
| 15 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 16 |
|
eqid |
|- ( mulGrp ` W ) = ( mulGrp ` W ) |
| 17 |
|
eqid |
|- ( .g ` ( mulGrp ` W ) ) = ( .g ` ( mulGrp ` W ) ) |
| 18 |
3 14 5 15 16 17 11
|
ply1coe |
|- ( ( U e. Ring /\ M e. B ) -> M = ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) |
| 19 |
13 8 18
|
syl2anc |
|- ( ph -> M = ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) |
| 20 |
19
|
fveq2d |
|- ( ph -> ( Q ` M ) = ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) ) |
| 21 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 22 |
|
eqid |
|- ( S ^s K ) = ( S ^s K ) |
| 23 |
3
|
ply1lmod |
|- ( U e. Ring -> W e. LMod ) |
| 24 |
13 23
|
syl |
|- ( ph -> W e. LMod ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> W e. LMod ) |
| 26 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 27 |
11 5 3 26
|
coe1fvalcl |
|- ( ( M e. B /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` U ) ) |
| 28 |
8 27
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` U ) ) |
| 29 |
3
|
ply1sca |
|- ( U e. Ring -> U = ( Scalar ` W ) ) |
| 30 |
13 29
|
syl |
|- ( ph -> U = ( Scalar ` W ) ) |
| 31 |
30
|
fveq2d |
|- ( ph -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
| 33 |
28 32
|
eleqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 34 |
16 5
|
mgpbas |
|- B = ( Base ` ( mulGrp ` W ) ) |
| 35 |
3
|
ply1ring |
|- ( U e. Ring -> W e. Ring ) |
| 36 |
13 35
|
syl |
|- ( ph -> W e. Ring ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> W e. Ring ) |
| 38 |
16
|
ringmgp |
|- ( W e. Ring -> ( mulGrp ` W ) e. Mnd ) |
| 39 |
37 38
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` W ) e. Mnd ) |
| 40 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 41 |
13
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> U e. Ring ) |
| 42 |
14 3 5
|
vr1cl |
|- ( U e. Ring -> ( var1 ` U ) e. B ) |
| 43 |
41 42
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( var1 ` U ) e. B ) |
| 44 |
34 17 39 40 43
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
| 45 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 46 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 47 |
5 45 15 46
|
lmodvscl |
|- ( ( W e. LMod /\ ( A ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. B ) |
| 48 |
25 33 44 47
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. B ) |
| 49 |
|
ssidd |
|- ( ph -> NN0 C_ NN0 ) |
| 50 |
|
fvexd |
|- ( ph -> ( 0g ` W ) e. _V ) |
| 51 |
|
fveq2 |
|- ( k = j -> ( A ` k ) = ( A ` j ) ) |
| 52 |
|
oveq1 |
|- ( k = j -> ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) = ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) |
| 53 |
51 52
|
oveq12d |
|- ( k = j -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 54 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 55 |
11 5 3 54
|
coe1ae0 |
|- ( M e. B -> E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) ) |
| 56 |
8 55
|
syl |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) ) |
| 57 |
|
simpr |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( A ` j ) = ( 0g ` U ) ) |
| 58 |
30
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> U = ( Scalar ` W ) ) |
| 59 |
58
|
fveq2d |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( 0g ` U ) = ( 0g ` ( Scalar ` W ) ) ) |
| 60 |
57 59
|
eqtrd |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( A ` j ) = ( 0g ` ( Scalar ` W ) ) ) |
| 61 |
60
|
oveq1d |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 62 |
24
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> W e. LMod ) |
| 63 |
36 38
|
syl |
|- ( ph -> ( mulGrp ` W ) e. Mnd ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( mulGrp ` W ) e. Mnd ) |
| 65 |
|
simpr |
|- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
| 66 |
13 42
|
syl |
|- ( ph -> ( var1 ` U ) e. B ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( var1 ` U ) e. B ) |
| 68 |
34 17 64 65 67
|
mulgnn0cld |
|- ( ( ph /\ j e. NN0 ) -> ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
| 69 |
68
|
ad4ant13 |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
| 70 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 71 |
5 45 15 70 21
|
lmod0vs |
|- ( ( W e. LMod /\ ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
| 72 |
62 69 71
|
syl2anc |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
| 73 |
61 72
|
eqtrd |
|- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
| 74 |
73
|
ex |
|- ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( A ` j ) = ( 0g ` U ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) |
| 75 |
74
|
imim2d |
|- ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
| 76 |
75
|
ralimdva |
|- ( ( ph /\ i e. NN0 ) -> ( A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
| 77 |
76
|
reximdva |
|- ( ph -> ( E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
| 78 |
56 77
|
mpd |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) |
| 79 |
50 48 53 78
|
mptnn0fsuppd |
|- ( ph -> ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) finSupp ( 0g ` W ) ) |
| 80 |
1 2 3 21 4 22 5 6 7 48 49 79
|
evls1gsumadd |
|- ( ph -> ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( ( S ^s K ) gsum ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) ) |
| 81 |
1 2 22 4 3
|
evls1rhm |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 82 |
6 7 81
|
syl2anc |
|- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 84 |
|
eqid |
|- ( algSc ` W ) = ( algSc ` W ) |
| 85 |
84 45 36 24 46 5
|
asclf |
|- ( ph -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> B ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> B ) |
| 87 |
86 33
|
ffvelcdmd |
|- ( ( ph /\ k e. NN0 ) -> ( ( algSc ` W ) ` ( A ` k ) ) e. B ) |
| 88 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
| 89 |
|
eqid |
|- ( .r ` ( S ^s K ) ) = ( .r ` ( S ^s K ) ) |
| 90 |
5 88 89
|
rhmmul |
|- ( ( Q e. ( W RingHom ( S ^s K ) ) /\ ( ( algSc ` W ) ` ( A ` k ) ) e. B /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 91 |
83 87 44 90
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 92 |
4
|
subrgcrng |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
| 93 |
6 7 92
|
syl2anc |
|- ( ph -> U e. CRing ) |
| 94 |
3
|
ply1assa |
|- ( U e. CRing -> W e. AssAlg ) |
| 95 |
93 94
|
syl |
|- ( ph -> W e. AssAlg ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> W e. AssAlg ) |
| 97 |
84 45 46 5 88 15
|
asclmul1 |
|- ( ( W e. AssAlg /\ ( A ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 98 |
96 33 44 97
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 99 |
98
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 100 |
|
eqid |
|- ( Base ` ( S ^s K ) ) = ( Base ` ( S ^s K ) ) |
| 101 |
6
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> S e. CRing ) |
| 102 |
2
|
fvexi |
|- K e. _V |
| 103 |
102
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> K e. _V ) |
| 104 |
5 100
|
rhmf |
|- ( Q e. ( W RingHom ( S ^s K ) ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 105 |
83 104
|
syl |
|- ( ( ph /\ k e. NN0 ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 106 |
105 87
|
ffvelcdmd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) e. ( Base ` ( S ^s K ) ) ) |
| 107 |
105 44
|
ffvelcdmd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. ( Base ` ( S ^s K ) ) ) |
| 108 |
22 100 101 103 106 107 9 89
|
pwsmulrval |
|- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) oF .x. ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 109 |
22 2 100 101 103 106
|
pwselbas |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) : K --> K ) |
| 110 |
109
|
ffnd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) Fn K ) |
| 111 |
22 2 100 101 103 107
|
pwselbas |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) : K --> K ) |
| 112 |
111
|
ffnd |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) Fn K ) |
| 113 |
|
inidm |
|- ( K i^i K ) = K |
| 114 |
6
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> S e. CRing ) |
| 115 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> R e. ( SubRing ` S ) ) |
| 116 |
2
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ K ) |
| 117 |
7 116
|
syl |
|- ( ph -> R C_ K ) |
| 118 |
4 2
|
ressbas2 |
|- ( R C_ K -> R = ( Base ` U ) ) |
| 119 |
117 118
|
syl |
|- ( ph -> R = ( Base ` U ) ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R = ( Base ` U ) ) |
| 121 |
28 120
|
eleqtrrd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. R ) |
| 122 |
121
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( A ` k ) e. R ) |
| 123 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> x e. K ) |
| 124 |
1 3 4 2 84 114 115 122 123
|
evls1scafv |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ` x ) = ( A ` k ) ) |
| 125 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> k e. NN0 ) |
| 126 |
1 4 3 14 2 17 10 114 115 125 123
|
evls1varpwval |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ` x ) = ( k .^ x ) ) |
| 127 |
110 112 103 103 113 124 126
|
offval |
|- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) oF .x. ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
| 128 |
108 127
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
| 129 |
91 99 128
|
3eqtr3d |
|- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
| 130 |
129
|
mpteq2dva |
|- ( ph -> ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) = ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) |
| 131 |
130
|
oveq2d |
|- ( ph -> ( ( S ^s K ) gsum ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( ( S ^s K ) gsum ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 132 |
|
eqid |
|- ( 0g ` ( S ^s K ) ) = ( 0g ` ( S ^s K ) ) |
| 133 |
102
|
a1i |
|- ( ph -> K e. _V ) |
| 134 |
|
nn0ex |
|- NN0 e. _V |
| 135 |
134
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 136 |
6
|
crngringd |
|- ( ph -> S e. Ring ) |
| 137 |
136
|
ringcmnd |
|- ( ph -> S e. CMnd ) |
| 138 |
136
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> S e. Ring ) |
| 139 |
7
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R e. ( SubRing ` S ) ) |
| 140 |
139 116
|
syl |
|- ( ( ph /\ k e. NN0 ) -> R C_ K ) |
| 141 |
140 121
|
sseldd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. K ) |
| 142 |
141
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( A ` k ) e. K ) |
| 143 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 144 |
143 2
|
mgpbas |
|- K = ( Base ` ( mulGrp ` S ) ) |
| 145 |
143
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 146 |
136 145
|
syl |
|- ( ph -> ( mulGrp ` S ) e. Mnd ) |
| 147 |
146
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( mulGrp ` S ) e. Mnd ) |
| 148 |
144 10 147 125 123
|
mulgnn0cld |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( k .^ x ) e. K ) |
| 149 |
2 9 138 142 148
|
ringcld |
|- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 150 |
149
|
3impa |
|- ( ( ph /\ k e. NN0 /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 151 |
150
|
3com23 |
|- ( ( ph /\ x e. K /\ k e. NN0 ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 152 |
151
|
3expb |
|- ( ( ph /\ ( x e. K /\ k e. NN0 ) ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 153 |
135
|
mptexd |
|- ( ph -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) e. _V ) |
| 154 |
|
funmpt |
|- Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
| 155 |
154
|
a1i |
|- ( ph -> Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) |
| 156 |
|
fvexd |
|- ( ph -> ( 0g ` ( S ^s K ) ) e. _V ) |
| 157 |
11 5 3 54
|
coe1sfi |
|- ( M e. B -> A finSupp ( 0g ` U ) ) |
| 158 |
8 157
|
syl |
|- ( ph -> A finSupp ( 0g ` U ) ) |
| 159 |
158
|
fsuppimpd |
|- ( ph -> ( A supp ( 0g ` U ) ) e. Fin ) |
| 160 |
11 5 3 26
|
coe1f |
|- ( M e. B -> A : NN0 --> ( Base ` U ) ) |
| 161 |
8 160
|
syl |
|- ( ph -> A : NN0 --> ( Base ` U ) ) |
| 162 |
161
|
ffnd |
|- ( ph -> A Fn NN0 ) |
| 163 |
162
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> A Fn NN0 ) |
| 164 |
134
|
a1i |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> NN0 e. _V ) |
| 165 |
|
fvexd |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( 0g ` U ) e. _V ) |
| 166 |
|
simpr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) |
| 167 |
163 164 165 166
|
fvdifsupp |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( A ` k ) = ( 0g ` U ) ) |
| 168 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 169 |
4 168
|
subrg0 |
|- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 170 |
7 169
|
syl |
|- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
| 171 |
170
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 172 |
167 171
|
eqtr4d |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( A ` k ) = ( 0g ` S ) ) |
| 173 |
172
|
adantr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( A ` k ) = ( 0g ` S ) ) |
| 174 |
173
|
oveq1d |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) = ( ( 0g ` S ) .x. ( k .^ x ) ) ) |
| 175 |
136
|
ad2antrr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> S e. Ring ) |
| 176 |
175 145
|
syl |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( mulGrp ` S ) e. Mnd ) |
| 177 |
|
simplr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) |
| 178 |
177
|
eldifad |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> k e. NN0 ) |
| 179 |
|
simpr |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> x e. K ) |
| 180 |
144 10 176 178 179
|
mulgnn0cld |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( k .^ x ) e. K ) |
| 181 |
2 9 168
|
ringlz |
|- ( ( S e. Ring /\ ( k .^ x ) e. K ) -> ( ( 0g ` S ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
| 182 |
175 180 181
|
syl2anc |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( 0g ` S ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
| 183 |
174 182
|
eqtrd |
|- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
| 184 |
183
|
mpteq2dva |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( x e. K |-> ( 0g ` S ) ) ) |
| 185 |
|
fconstmpt |
|- ( K X. { ( 0g ` S ) } ) = ( x e. K |-> ( 0g ` S ) ) |
| 186 |
184 185
|
eqtr4di |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( K X. { ( 0g ` S ) } ) ) |
| 187 |
137
|
cmnmndd |
|- ( ph -> S e. Mnd ) |
| 188 |
22 168
|
pws0g |
|- ( ( S e. Mnd /\ K e. _V ) -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
| 189 |
187 133 188
|
syl2anc |
|- ( ph -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
| 190 |
189
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
| 191 |
186 190
|
eqtrd |
|- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( 0g ` ( S ^s K ) ) ) |
| 192 |
191 135
|
suppss2 |
|- ( ph -> ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) supp ( 0g ` ( S ^s K ) ) ) C_ ( A supp ( 0g ` U ) ) ) |
| 193 |
|
suppssfifsupp |
|- ( ( ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) /\ ( 0g ` ( S ^s K ) ) e. _V ) /\ ( ( A supp ( 0g ` U ) ) e. Fin /\ ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) supp ( 0g ` ( S ^s K ) ) ) C_ ( A supp ( 0g ` U ) ) ) ) -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) finSupp ( 0g ` ( S ^s K ) ) ) |
| 194 |
153 155 156 159 192 193
|
syl32anc |
|- ( ph -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) finSupp ( 0g ` ( S ^s K ) ) ) |
| 195 |
22 2 132 133 135 137 152 194
|
pwsgsum |
|- ( ph -> ( ( S ^s K ) gsum ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 196 |
80 131 195
|
3eqtrd |
|- ( ph -> ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 197 |
20 196
|
eqtrd |
|- ( ph -> ( Q ` M ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |