| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1coe.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1coe.x |
|- X = ( var1 ` R ) |
| 3 |
|
ply1coe.b |
|- B = ( Base ` P ) |
| 4 |
|
ply1coe.n |
|- .x. = ( .s ` P ) |
| 5 |
|
ply1coe.m |
|- M = ( mulGrp ` P ) |
| 6 |
|
ply1coe.e |
|- .^ = ( .g ` M ) |
| 7 |
|
ply1coe.a |
|- A = ( coe1 ` K ) |
| 8 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 9 |
|
psr1baslem |
|- ( NN0 ^m 1o ) = { d e. ( NN0 ^m 1o ) | ( `' d " NN ) e. Fin } |
| 10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 11 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 12 |
|
1onn |
|- 1o e. _om |
| 13 |
12
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> 1o e. _om ) |
| 14 |
1 3
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
| 15 |
1 8 4
|
ply1vsca |
|- .x. = ( .s ` ( 1o mPoly R ) ) |
| 16 |
|
simpl |
|- ( ( R e. Ring /\ K e. B ) -> R e. Ring ) |
| 17 |
|
simpr |
|- ( ( R e. Ring /\ K e. B ) -> K e. B ) |
| 18 |
8 9 10 11 13 14 15 16 17
|
mplcoe1 |
|- ( ( R e. Ring /\ K e. B ) -> K = ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) ) ) |
| 19 |
7
|
fvcoe1 |
|- ( ( K e. B /\ a e. ( NN0 ^m 1o ) ) -> ( K ` a ) = ( A ` ( a ` (/) ) ) ) |
| 20 |
19
|
adantll |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( K ` a ) = ( A ` ( a ` (/) ) ) ) |
| 21 |
12
|
a1i |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> 1o e. _om ) |
| 22 |
|
eqid |
|- ( mulGrp ` ( 1o mPoly R ) ) = ( mulGrp ` ( 1o mPoly R ) ) |
| 23 |
|
eqid |
|- ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) = ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) |
| 24 |
|
eqid |
|- ( 1o mVar R ) = ( 1o mVar R ) |
| 25 |
|
simpll |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> R e. Ring ) |
| 26 |
|
simpr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> a e. ( NN0 ^m 1o ) ) |
| 27 |
|
eqidd |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) |
| 28 |
|
0ex |
|- (/) e. _V |
| 29 |
|
fveq2 |
|- ( b = (/) -> ( ( 1o mVar R ) ` b ) = ( ( 1o mVar R ) ` (/) ) ) |
| 30 |
29
|
oveq1d |
|- ( b = (/) -> ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) |
| 31 |
29
|
oveq2d |
|- ( b = (/) -> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) |
| 32 |
30 31
|
eqeq12d |
|- ( b = (/) -> ( ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) ) |
| 33 |
28 32
|
ralsn |
|- ( A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) |
| 34 |
27 33
|
sylibr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) |
| 35 |
|
fveq2 |
|- ( x = (/) -> ( ( 1o mVar R ) ` x ) = ( ( 1o mVar R ) ` (/) ) ) |
| 36 |
35
|
oveq2d |
|- ( x = (/) -> ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) |
| 37 |
35
|
oveq1d |
|- ( x = (/) -> ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) |
| 38 |
36 37
|
eqeq12d |
|- ( x = (/) -> ( ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) ) |
| 39 |
38
|
ralbidv |
|- ( x = (/) -> ( A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) ) |
| 40 |
28 39
|
ralsn |
|- ( A. x e. { (/) } A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) |
| 41 |
34 40
|
sylibr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> A. x e. { (/) } A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) |
| 42 |
|
df1o2 |
|- 1o = { (/) } |
| 43 |
42
|
raleqi |
|- ( A. b e. 1o ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) |
| 44 |
42 43
|
raleqbii |
|- ( A. x e. 1o A. b e. 1o ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. x e. { (/) } A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) |
| 45 |
41 44
|
sylibr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> A. x e. 1o A. b e. 1o ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) |
| 46 |
8 9 10 11 21 22 23 24 25 26 45
|
mplcoe5 |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) = ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) ) |
| 47 |
42
|
mpteq1i |
|- ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) = ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) |
| 48 |
47
|
oveq2i |
|- ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) |
| 49 |
8
|
mplring |
|- ( ( 1o e. _om /\ R e. Ring ) -> ( 1o mPoly R ) e. Ring ) |
| 50 |
12 49
|
mpan |
|- ( R e. Ring -> ( 1o mPoly R ) e. Ring ) |
| 51 |
22
|
ringmgp |
|- ( ( 1o mPoly R ) e. Ring -> ( mulGrp ` ( 1o mPoly R ) ) e. Mnd ) |
| 52 |
50 51
|
syl |
|- ( R e. Ring -> ( mulGrp ` ( 1o mPoly R ) ) e. Mnd ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( mulGrp ` ( 1o mPoly R ) ) e. Mnd ) |
| 54 |
28
|
a1i |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> (/) e. _V ) |
| 55 |
22 14
|
mgpbas |
|- B = ( Base ` ( mulGrp ` ( 1o mPoly R ) ) ) |
| 56 |
55
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> B = ( Base ` ( mulGrp ` ( 1o mPoly R ) ) ) ) |
| 57 |
5 3
|
mgpbas |
|- B = ( Base ` M ) |
| 58 |
57
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> B = ( Base ` M ) ) |
| 59 |
|
ssv |
|- B C_ _V |
| 60 |
59
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> B C_ _V ) |
| 61 |
|
ovexd |
|- ( ( ( R e. Ring /\ K e. B ) /\ ( a e. _V /\ b e. _V ) ) -> ( a ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) b ) e. _V ) |
| 62 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 63 |
1 8 62
|
ply1mulr |
|- ( .r ` P ) = ( .r ` ( 1o mPoly R ) ) |
| 64 |
22 63
|
mgpplusg |
|- ( .r ` P ) = ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) |
| 65 |
5 62
|
mgpplusg |
|- ( .r ` P ) = ( +g ` M ) |
| 66 |
64 65
|
eqtr3i |
|- ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) = ( +g ` M ) |
| 67 |
66
|
oveqi |
|- ( a ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) b ) = ( a ( +g ` M ) b ) |
| 68 |
67
|
a1i |
|- ( ( ( R e. Ring /\ K e. B ) /\ ( a e. _V /\ b e. _V ) ) -> ( a ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) b ) = ( a ( +g ` M ) b ) ) |
| 69 |
23 6 56 58 60 61 68
|
mulgpropd |
|- ( ( R e. Ring /\ K e. B ) -> ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) = .^ ) |
| 70 |
69
|
oveqd |
|- ( ( R e. Ring /\ K e. B ) -> ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) = ( ( a ` (/) ) .^ X ) ) |
| 71 |
70
|
adantr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) = ( ( a ` (/) ) .^ X ) ) |
| 72 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 73 |
5
|
ringmgp |
|- ( P e. Ring -> M e. Mnd ) |
| 74 |
72 73
|
syl |
|- ( R e. Ring -> M e. Mnd ) |
| 75 |
74
|
ad2antrr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> M e. Mnd ) |
| 76 |
|
elmapi |
|- ( a e. ( NN0 ^m 1o ) -> a : 1o --> NN0 ) |
| 77 |
|
0lt1o |
|- (/) e. 1o |
| 78 |
|
ffvelcdm |
|- ( ( a : 1o --> NN0 /\ (/) e. 1o ) -> ( a ` (/) ) e. NN0 ) |
| 79 |
76 77 78
|
sylancl |
|- ( a e. ( NN0 ^m 1o ) -> ( a ` (/) ) e. NN0 ) |
| 80 |
79
|
adantl |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( a ` (/) ) e. NN0 ) |
| 81 |
2 1 3
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
| 82 |
81
|
ad2antrr |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> X e. B ) |
| 83 |
57 6 75 80 82
|
mulgnn0cld |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( a ` (/) ) .^ X ) e. B ) |
| 84 |
71 83
|
eqeltrd |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) e. B ) |
| 85 |
|
fveq2 |
|- ( c = (/) -> ( a ` c ) = ( a ` (/) ) ) |
| 86 |
|
fveq2 |
|- ( c = (/) -> ( ( 1o mVar R ) ` c ) = ( ( 1o mVar R ) ` (/) ) ) |
| 87 |
2
|
vr1val |
|- X = ( ( 1o mVar R ) ` (/) ) |
| 88 |
86 87
|
eqtr4di |
|- ( c = (/) -> ( ( 1o mVar R ) ` c ) = X ) |
| 89 |
85 88
|
oveq12d |
|- ( c = (/) -> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) |
| 90 |
55 89
|
gsumsn |
|- ( ( ( mulGrp ` ( 1o mPoly R ) ) e. Mnd /\ (/) e. _V /\ ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) e. B ) -> ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) |
| 91 |
53 54 84 90
|
syl3anc |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) |
| 92 |
48 91
|
eqtrid |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) |
| 93 |
46 92 71
|
3eqtrd |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) = ( ( a ` (/) ) .^ X ) ) |
| 94 |
20 93
|
oveq12d |
|- ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) |
| 95 |
94
|
mpteq2dva |
|- ( ( R e. Ring /\ K e. B ) -> ( a e. ( NN0 ^m 1o ) |-> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) |
| 96 |
95
|
oveq2d |
|- ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) ) = ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) ) |
| 97 |
|
nn0ex |
|- NN0 e. _V |
| 98 |
97
|
mptex |
|- ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) e. _V |
| 99 |
98
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) e. _V ) |
| 100 |
1
|
fvexi |
|- P e. _V |
| 101 |
100
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> P e. _V ) |
| 102 |
|
ovexd |
|- ( ( R e. Ring /\ K e. B ) -> ( 1o mPoly R ) e. _V ) |
| 103 |
3 14
|
eqtr3i |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 104 |
103
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) ) |
| 105 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 106 |
1 8 105
|
ply1plusg |
|- ( +g ` P ) = ( +g ` ( 1o mPoly R ) ) |
| 107 |
106
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> ( +g ` P ) = ( +g ` ( 1o mPoly R ) ) ) |
| 108 |
99 101 102 104 107
|
gsumpropd |
|- ( ( R e. Ring /\ K e. B ) -> ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) = ( ( 1o mPoly R ) gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 109 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 110 |
8 1 109
|
ply1mpl0 |
|- ( 0g ` P ) = ( 0g ` ( 1o mPoly R ) ) |
| 111 |
8
|
mpllmod |
|- ( ( 1o e. _om /\ R e. Ring ) -> ( 1o mPoly R ) e. LMod ) |
| 112 |
12 16 111
|
sylancr |
|- ( ( R e. Ring /\ K e. B ) -> ( 1o mPoly R ) e. LMod ) |
| 113 |
|
lmodcmn |
|- ( ( 1o mPoly R ) e. LMod -> ( 1o mPoly R ) e. CMnd ) |
| 114 |
112 113
|
syl |
|- ( ( R e. Ring /\ K e. B ) -> ( 1o mPoly R ) e. CMnd ) |
| 115 |
97
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> NN0 e. _V ) |
| 116 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 117 |
116
|
ad2antrr |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> P e. LMod ) |
| 118 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 119 |
7 3 1 118
|
coe1f |
|- ( K e. B -> A : NN0 --> ( Base ` R ) ) |
| 120 |
119
|
adantl |
|- ( ( R e. Ring /\ K e. B ) -> A : NN0 --> ( Base ` R ) ) |
| 121 |
120
|
ffvelcdmda |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` R ) ) |
| 122 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 123 |
122
|
eqcomd |
|- ( R e. Ring -> ( Scalar ` P ) = R ) |
| 124 |
123
|
ad2antrr |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( Scalar ` P ) = R ) |
| 125 |
124
|
fveq2d |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
| 126 |
121 125
|
eleqtrrd |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` ( Scalar ` P ) ) ) |
| 127 |
74
|
ad2antrr |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> M e. Mnd ) |
| 128 |
|
simpr |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> k e. NN0 ) |
| 129 |
81
|
ad2antrr |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> X e. B ) |
| 130 |
57 6 127 128 129
|
mulgnn0cld |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. B ) |
| 131 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 132 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 133 |
3 131 4 132
|
lmodvscl |
|- ( ( P e. LMod /\ ( A ` k ) e. ( Base ` ( Scalar ` P ) ) /\ ( k .^ X ) e. B ) -> ( ( A ` k ) .x. ( k .^ X ) ) e. B ) |
| 134 |
117 126 130 133
|
syl3anc |
|- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( ( A ` k ) .x. ( k .^ X ) ) e. B ) |
| 135 |
134
|
fmpttd |
|- ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) : NN0 --> B ) |
| 136 |
1 2 3 4 5 6 7
|
ply1coefsupp |
|- ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` P ) ) |
| 137 |
|
eqid |
|- ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) |
| 138 |
42 97 28 137
|
mapsnf1o2 |
|- ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 |
| 139 |
138
|
a1i |
|- ( ( R e. Ring /\ K e. B ) -> ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 ) |
| 140 |
14 110 114 115 135 136 139
|
gsumf1o |
|- ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) = ( ( 1o mPoly R ) gsum ( ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) o. ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) ) ) |
| 141 |
|
eqidd |
|- ( ( R e. Ring /\ K e. B ) -> ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) |
| 142 |
|
eqidd |
|- ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) = ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) |
| 143 |
|
fveq2 |
|- ( k = ( a ` (/) ) -> ( A ` k ) = ( A ` ( a ` (/) ) ) ) |
| 144 |
|
oveq1 |
|- ( k = ( a ` (/) ) -> ( k .^ X ) = ( ( a ` (/) ) .^ X ) ) |
| 145 |
143 144
|
oveq12d |
|- ( k = ( a ` (/) ) -> ( ( A ` k ) .x. ( k .^ X ) ) = ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) |
| 146 |
80 141 142 145
|
fmptco |
|- ( ( R e. Ring /\ K e. B ) -> ( ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) o. ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) |
| 147 |
146
|
oveq2d |
|- ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) o. ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) ) = ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) ) |
| 148 |
108 140 147
|
3eqtrrd |
|- ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) = ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 149 |
18 96 148
|
3eqtrd |
|- ( ( R e. Ring /\ K e. B ) -> K = ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |