Metamath Proof Explorer


Theorem evls1gsumadd

Description: Univariate polynomial evaluation maps (additive) group sums to group sums. (Contributed by AV, 14-Sep-2019)

Ref Expression
Hypotheses evls1gsumadd.q
|- Q = ( S evalSub1 R )
evls1gsumadd.k
|- K = ( Base ` S )
evls1gsumadd.w
|- W = ( Poly1 ` U )
evls1gsumadd.0
|- .0. = ( 0g ` W )
evls1gsumadd.u
|- U = ( S |`s R )
evls1gsumadd.p
|- P = ( S ^s K )
evls1gsumadd.b
|- B = ( Base ` W )
evls1gsumadd.s
|- ( ph -> S e. CRing )
evls1gsumadd.r
|- ( ph -> R e. ( SubRing ` S ) )
evls1gsumadd.y
|- ( ( ph /\ x e. N ) -> Y e. B )
evls1gsumadd.n
|- ( ph -> N C_ NN0 )
evls1gsumadd.f
|- ( ph -> ( x e. N |-> Y ) finSupp .0. )
Assertion evls1gsumadd
|- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) )

Proof

Step Hyp Ref Expression
1 evls1gsumadd.q
 |-  Q = ( S evalSub1 R )
2 evls1gsumadd.k
 |-  K = ( Base ` S )
3 evls1gsumadd.w
 |-  W = ( Poly1 ` U )
4 evls1gsumadd.0
 |-  .0. = ( 0g ` W )
5 evls1gsumadd.u
 |-  U = ( S |`s R )
6 evls1gsumadd.p
 |-  P = ( S ^s K )
7 evls1gsumadd.b
 |-  B = ( Base ` W )
8 evls1gsumadd.s
 |-  ( ph -> S e. CRing )
9 evls1gsumadd.r
 |-  ( ph -> R e. ( SubRing ` S ) )
10 evls1gsumadd.y
 |-  ( ( ph /\ x e. N ) -> Y e. B )
11 evls1gsumadd.n
 |-  ( ph -> N C_ NN0 )
12 evls1gsumadd.f
 |-  ( ph -> ( x e. N |-> Y ) finSupp .0. )
13 5 subrgring
 |-  ( R e. ( SubRing ` S ) -> U e. Ring )
14 9 13 syl
 |-  ( ph -> U e. Ring )
15 3 ply1ring
 |-  ( U e. Ring -> W e. Ring )
16 ringcmn
 |-  ( W e. Ring -> W e. CMnd )
17 14 15 16 3syl
 |-  ( ph -> W e. CMnd )
18 crngring
 |-  ( S e. CRing -> S e. Ring )
19 8 18 syl
 |-  ( ph -> S e. Ring )
20 2 fvexi
 |-  K e. _V
21 19 20 jctir
 |-  ( ph -> ( S e. Ring /\ K e. _V ) )
22 6 pwsring
 |-  ( ( S e. Ring /\ K e. _V ) -> P e. Ring )
23 ringmnd
 |-  ( P e. Ring -> P e. Mnd )
24 21 22 23 3syl
 |-  ( ph -> P e. Mnd )
25 nn0ex
 |-  NN0 e. _V
26 25 a1i
 |-  ( ph -> NN0 e. _V )
27 26 11 ssexd
 |-  ( ph -> N e. _V )
28 1 2 6 5 3 evls1rhm
 |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) )
29 8 9 28 syl2anc
 |-  ( ph -> Q e. ( W RingHom P ) )
30 rhmghm
 |-  ( Q e. ( W RingHom P ) -> Q e. ( W GrpHom P ) )
31 ghmmhm
 |-  ( Q e. ( W GrpHom P ) -> Q e. ( W MndHom P ) )
32 29 30 31 3syl
 |-  ( ph -> Q e. ( W MndHom P ) )
33 7 4 17 24 27 32 10 12 gsummptmhm
 |-  ( ph -> ( P gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( W gsum ( x e. N |-> Y ) ) ) )
34 33 eqcomd
 |-  ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) )