Step |
Hyp |
Ref |
Expression |
1 |
|
evls1varpwval.q |
|- Q = ( S evalSub1 R ) |
2 |
|
evls1varpwval.u |
|- U = ( S |`s R ) |
3 |
|
evls1varpwval.w |
|- W = ( Poly1 ` U ) |
4 |
|
evls1varpwval.x |
|- X = ( var1 ` U ) |
5 |
|
evls1varpwval.b |
|- B = ( Base ` S ) |
6 |
|
evls1varpwval.e |
|- ./\ = ( .g ` ( mulGrp ` W ) ) |
7 |
|
evls1varpwval.f |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
8 |
|
evls1varpwval.s |
|- ( ph -> S e. CRing ) |
9 |
|
evls1varpwval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
10 |
|
evls1varpwval.n |
|- ( ph -> N e. NN0 ) |
11 |
|
evls1varpwval.c |
|- ( ph -> C e. B ) |
12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
13 |
2
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
14 |
4 3 12
|
vr1cl |
|- ( U e. Ring -> X e. ( Base ` W ) ) |
15 |
9 13 14
|
3syl |
|- ( ph -> X e. ( Base ` W ) ) |
16 |
1 5 3 2 12 8 9 6 7 10 15 11
|
evls1expd |
|- ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ ( ( Q ` X ) ` C ) ) ) |
17 |
1 4 2 5 8 9
|
evls1var |
|- ( ph -> ( Q ` X ) = ( _I |` B ) ) |
18 |
17
|
fveq1d |
|- ( ph -> ( ( Q ` X ) ` C ) = ( ( _I |` B ) ` C ) ) |
19 |
|
fvresi |
|- ( C e. B -> ( ( _I |` B ) ` C ) = C ) |
20 |
11 19
|
syl |
|- ( ph -> ( ( _I |` B ) ` C ) = C ) |
21 |
18 20
|
eqtrd |
|- ( ph -> ( ( Q ` X ) ` C ) = C ) |
22 |
21
|
oveq2d |
|- ( ph -> ( N .^ ( ( Q ` X ) ` C ) ) = ( N .^ C ) ) |
23 |
16 22
|
eqtrd |
|- ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ C ) ) |