Metamath Proof Explorer


Theorem evls1varpwval

Description: Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. See evl1varpwval . (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses evls1varpwval.q
|- Q = ( S evalSub1 R )
evls1varpwval.u
|- U = ( S |`s R )
evls1varpwval.w
|- W = ( Poly1 ` U )
evls1varpwval.x
|- X = ( var1 ` U )
evls1varpwval.b
|- B = ( Base ` S )
evls1varpwval.e
|- ./\ = ( .g ` ( mulGrp ` W ) )
evls1varpwval.f
|- .^ = ( .g ` ( mulGrp ` S ) )
evls1varpwval.s
|- ( ph -> S e. CRing )
evls1varpwval.r
|- ( ph -> R e. ( SubRing ` S ) )
evls1varpwval.n
|- ( ph -> N e. NN0 )
evls1varpwval.c
|- ( ph -> C e. B )
Assertion evls1varpwval
|- ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ C ) )

Proof

Step Hyp Ref Expression
1 evls1varpwval.q
 |-  Q = ( S evalSub1 R )
2 evls1varpwval.u
 |-  U = ( S |`s R )
3 evls1varpwval.w
 |-  W = ( Poly1 ` U )
4 evls1varpwval.x
 |-  X = ( var1 ` U )
5 evls1varpwval.b
 |-  B = ( Base ` S )
6 evls1varpwval.e
 |-  ./\ = ( .g ` ( mulGrp ` W ) )
7 evls1varpwval.f
 |-  .^ = ( .g ` ( mulGrp ` S ) )
8 evls1varpwval.s
 |-  ( ph -> S e. CRing )
9 evls1varpwval.r
 |-  ( ph -> R e. ( SubRing ` S ) )
10 evls1varpwval.n
 |-  ( ph -> N e. NN0 )
11 evls1varpwval.c
 |-  ( ph -> C e. B )
12 eqid
 |-  ( Base ` W ) = ( Base ` W )
13 2 subrgring
 |-  ( R e. ( SubRing ` S ) -> U e. Ring )
14 4 3 12 vr1cl
 |-  ( U e. Ring -> X e. ( Base ` W ) )
15 9 13 14 3syl
 |-  ( ph -> X e. ( Base ` W ) )
16 1 5 3 2 12 8 9 6 7 10 15 11 evls1expd
 |-  ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ ( ( Q ` X ) ` C ) ) )
17 1 4 2 5 8 9 evls1var
 |-  ( ph -> ( Q ` X ) = ( _I |` B ) )
18 17 fveq1d
 |-  ( ph -> ( ( Q ` X ) ` C ) = ( ( _I |` B ) ` C ) )
19 fvresi
 |-  ( C e. B -> ( ( _I |` B ) ` C ) = C )
20 11 19 syl
 |-  ( ph -> ( ( _I |` B ) ` C ) = C )
21 18 20 eqtrd
 |-  ( ph -> ( ( Q ` X ) ` C ) = C )
22 21 oveq2d
 |-  ( ph -> ( N .^ ( ( Q ` X ) ` C ) ) = ( N .^ C ) )
23 16 22 eqtrd
 |-  ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ C ) )