| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1varpwval.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
| 2 |
|
evls1varpwval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 3 |
|
evls1varpwval.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
| 4 |
|
evls1varpwval.x |
⊢ 𝑋 = ( var1 ‘ 𝑈 ) |
| 5 |
|
evls1varpwval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 6 |
|
evls1varpwval.e |
⊢ ∧ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 7 |
|
evls1varpwval.f |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 8 |
|
evls1varpwval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 9 |
|
evls1varpwval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 10 |
|
evls1varpwval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 11 |
|
evls1varpwval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 13 |
2
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 14 |
4 3 12
|
vr1cl |
⊢ ( 𝑈 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 15 |
9 13 14
|
3syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 16 |
1 5 3 2 12 8 9 6 7 10 15 11
|
evls1expd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∧ 𝑋 ) ) ‘ 𝐶 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
| 17 |
1 4 2 5 8 9
|
evls1var |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |
| 18 |
17
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐶 ) = ( ( I ↾ 𝐵 ) ‘ 𝐶 ) ) |
| 19 |
|
fvresi |
⊢ ( 𝐶 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 ) |
| 20 |
11 19
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 ) |
| 21 |
18 20
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐶 ) = 𝐶 ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐶 ) ) = ( 𝑁 ↑ 𝐶 ) ) |
| 23 |
16 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∧ 𝑋 ) ) ‘ 𝐶 ) = ( 𝑁 ↑ 𝐶 ) ) |