Metamath Proof Explorer


Theorem evls1expd

Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd . (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses evls1expd.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
evls1expd.k 𝐾 = ( Base ‘ 𝑆 )
evls1expd.w 𝑊 = ( Poly1𝑈 )
evls1expd.u 𝑈 = ( 𝑆s 𝑅 )
evls1expd.b 𝐵 = ( Base ‘ 𝑊 )
evls1expd.s ( 𝜑𝑆 ∈ CRing )
evls1expd.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evls1expd.1 = ( .g ‘ ( mulGrp ‘ 𝑊 ) )
evls1expd.2 = ( .g ‘ ( mulGrp ‘ 𝑆 ) )
evls1expd.n ( 𝜑𝑁 ∈ ℕ0 )
evls1expd.m ( 𝜑𝑀𝐵 )
evls1expd.c ( 𝜑𝐶𝐾 )
Assertion evls1expd ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ( ( 𝑄𝑀 ) ‘ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 evls1expd.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 evls1expd.k 𝐾 = ( Base ‘ 𝑆 )
3 evls1expd.w 𝑊 = ( Poly1𝑈 )
4 evls1expd.u 𝑈 = ( 𝑆s 𝑅 )
5 evls1expd.b 𝐵 = ( Base ‘ 𝑊 )
6 evls1expd.s ( 𝜑𝑆 ∈ CRing )
7 evls1expd.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
8 evls1expd.1 = ( .g ‘ ( mulGrp ‘ 𝑊 ) )
9 evls1expd.2 = ( .g ‘ ( mulGrp ‘ 𝑆 ) )
10 evls1expd.n ( 𝜑𝑁 ∈ ℕ0 )
11 evls1expd.m ( 𝜑𝑀𝐵 )
12 evls1expd.c ( 𝜑𝐶𝐾 )
13 eqid ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 )
14 1 4 3 13 2 5 8 6 7 10 11 evls1pw ( 𝜑 → ( 𝑄 ‘ ( 𝑁 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆s 𝐾 ) ) ) ( 𝑄𝑀 ) ) )
15 14 fveq1d ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 𝑀 ) ) ‘ 𝐶 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆s 𝐾 ) ) ) ( 𝑄𝑀 ) ) ‘ 𝐶 ) )
16 eqid ( 𝑆s 𝐾 ) = ( 𝑆s 𝐾 )
17 eqid ( Base ‘ ( 𝑆s 𝐾 ) ) = ( Base ‘ ( 𝑆s 𝐾 ) )
18 eqid ( mulGrp ‘ ( 𝑆s 𝐾 ) ) = ( mulGrp ‘ ( 𝑆s 𝐾 ) )
19 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
20 eqid ( .g ‘ ( mulGrp ‘ ( 𝑆s 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆s 𝐾 ) ) )
21 6 crngringd ( 𝜑𝑆 ∈ Ring )
22 2 fvexi 𝐾 ∈ V
23 22 a1i ( 𝜑𝐾 ∈ V )
24 1 2 16 4 3 evls1rhm ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆s 𝐾 ) ) )
25 6 7 24 syl2anc ( 𝜑𝑄 ∈ ( 𝑊 RingHom ( 𝑆s 𝐾 ) ) )
26 5 17 rhmf ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆s 𝐾 ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆s 𝐾 ) ) )
27 25 26 syl ( 𝜑𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆s 𝐾 ) ) )
28 27 11 ffvelcdmd ( 𝜑 → ( 𝑄𝑀 ) ∈ ( Base ‘ ( 𝑆s 𝐾 ) ) )
29 16 17 18 19 20 9 21 23 10 28 12 pwsexpg ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆s 𝐾 ) ) ) ( 𝑄𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ( ( 𝑄𝑀 ) ‘ 𝐶 ) ) )
30 15 29 eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ( ( 𝑄𝑀 ) ‘ 𝐶 ) ) )