| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1expd.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
| 2 |
|
evls1expd.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 3 |
|
evls1expd.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
| 4 |
|
evls1expd.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 5 |
|
evls1expd.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 6 |
|
evls1expd.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 7 |
|
evls1expd.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 8 |
|
evls1expd.1 |
⊢ ∧ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 9 |
|
evls1expd.2 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 10 |
|
evls1expd.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 11 |
|
evls1expd.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 12 |
|
evls1expd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
| 13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) |
| 14 |
1 4 3 13 2 5 8 6 7 10 11
|
evls1pw |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ∧ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑀 ) ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∧ 𝑀 ) ) ‘ 𝐶 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐶 ) ) |
| 16 |
|
eqid |
⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) |
| 18 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) = ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) |
| 19 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 20 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 21 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 22 |
2
|
fvexi |
⊢ 𝐾 ∈ V |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 24 |
1 2 16 4 3
|
evls1rhm |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 25 |
6 7 24
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 26 |
5 17
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 28 |
27 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 29 |
16 17 18 19 20 9 21 23 10 28 12
|
pwsexpg |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) ) |
| 30 |
15 29
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∧ 𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) ) |