Metamath Proof Explorer


Theorem evls1expd

Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd . (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses evls1expd.q Q=SevalSub1R
evls1expd.k K=BaseS
evls1expd.w W=Poly1U
evls1expd.u U=S𝑠R
evls1expd.b B=BaseW
evls1expd.s φSCRing
evls1expd.r φRSubRingS
evls1expd.1 ˙=mulGrpW
evls1expd.2 ×˙=mulGrpS
evls1expd.n φN0
evls1expd.m φMB
evls1expd.c φCK
Assertion evls1expd φQN˙MC=N×˙QMC

Proof

Step Hyp Ref Expression
1 evls1expd.q Q=SevalSub1R
2 evls1expd.k K=BaseS
3 evls1expd.w W=Poly1U
4 evls1expd.u U=S𝑠R
5 evls1expd.b B=BaseW
6 evls1expd.s φSCRing
7 evls1expd.r φRSubRingS
8 evls1expd.1 ˙=mulGrpW
9 evls1expd.2 ×˙=mulGrpS
10 evls1expd.n φN0
11 evls1expd.m φMB
12 evls1expd.c φCK
13 eqid mulGrpW=mulGrpW
14 1 4 3 13 2 5 8 6 7 10 11 evls1pw φQN˙M=NmulGrpS𝑠KQM
15 14 fveq1d φQN˙MC=NmulGrpS𝑠KQMC
16 eqid S𝑠K=S𝑠K
17 eqid BaseS𝑠K=BaseS𝑠K
18 eqid mulGrpS𝑠K=mulGrpS𝑠K
19 eqid mulGrpS=mulGrpS
20 eqid mulGrpS𝑠K=mulGrpS𝑠K
21 6 crngringd φSRing
22 2 fvexi KV
23 22 a1i φKV
24 1 2 16 4 3 evls1rhm SCRingRSubRingSQWRingHomS𝑠K
25 6 7 24 syl2anc φQWRingHomS𝑠K
26 5 17 rhmf QWRingHomS𝑠KQ:BBaseS𝑠K
27 25 26 syl φQ:BBaseS𝑠K
28 27 11 ffvelcdmd φQMBaseS𝑠K
29 16 17 18 19 20 9 21 23 10 28 12 pwsexpg φNmulGrpS𝑠KQMC=N×˙QMC
30 15 29 eqtrd φQN˙MC=N×˙QMC