Metamath Proof Explorer


Theorem evls1rhm

Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019)

Ref Expression
Hypotheses evls1rhm.q Q=SevalSub1R
evls1rhm.b B=BaseS
evls1rhm.t T=S𝑠B
evls1rhm.u U=S𝑠R
evls1rhm.w W=Poly1U
Assertion evls1rhm SCRingRSubRingSQWRingHomT

Proof

Step Hyp Ref Expression
1 evls1rhm.q Q=SevalSub1R
2 evls1rhm.b B=BaseS
3 evls1rhm.t T=S𝑠B
4 evls1rhm.u U=S𝑠R
5 evls1rhm.w W=Poly1U
6 2 subrgss RSubRingSRB
7 6 adantl SCRingRSubRingSRB
8 elpwg RSubRingSR𝒫BRB
9 8 adantl SCRingRSubRingSR𝒫BRB
10 7 9 mpbird SCRingRSubRingSR𝒫B
11 eqid 1𝑜evalSubS=1𝑜evalSubS
12 1 11 2 evls1fval SCRingR𝒫BQ=xBB1𝑜xyB1𝑜×y1𝑜evalSubSR
13 10 12 syldan SCRingRSubRingSQ=xBB1𝑜xyB1𝑜×y1𝑜evalSubSR
14 eqid xBB1𝑜xyB1𝑜×y=xBB1𝑜xyB1𝑜×y
15 2 3 14 evls1rhmlem SCRingxBB1𝑜xyB1𝑜×yS𝑠B1𝑜RingHomT
16 1on 1𝑜On
17 eqid 1𝑜evalSubSR=1𝑜evalSubSR
18 eqid 1𝑜mPolyU=1𝑜mPolyU
19 eqid S𝑠B1𝑜=S𝑠B1𝑜
20 17 18 4 19 2 evlsrhm 1𝑜OnSCRingRSubRingS1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜
21 16 20 mp3an1 SCRingRSubRingS1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜
22 eqidd SCRingRSubRingSBaseW=BaseW
23 eqidd SCRingRSubRingSBaseS𝑠B1𝑜=BaseS𝑠B1𝑜
24 eqid PwSer1U=PwSer1U
25 eqid BaseW=BaseW
26 5 24 25 ply1bas BaseW=Base1𝑜mPolyU
27 26 a1i SCRingRSubRingSBaseW=Base1𝑜mPolyU
28 eqid +W=+W
29 5 18 28 ply1plusg +W=+1𝑜mPolyU
30 29 a1i SCRingRSubRingS+W=+1𝑜mPolyU
31 30 oveqdr SCRingRSubRingSxBaseWyBaseWx+Wy=x+1𝑜mPolyUy
32 eqidd SCRingRSubRingSxBaseS𝑠B1𝑜yBaseS𝑠B1𝑜x+S𝑠B1𝑜y=x+S𝑠B1𝑜y
33 eqid W=W
34 5 18 33 ply1mulr W=1𝑜mPolyU
35 34 a1i SCRingRSubRingSW=1𝑜mPolyU
36 35 oveqdr SCRingRSubRingSxBaseWyBaseWxWy=x1𝑜mPolyUy
37 eqidd SCRingRSubRingSxBaseS𝑠B1𝑜yBaseS𝑠B1𝑜xS𝑠B1𝑜y=xS𝑠B1𝑜y
38 22 23 27 23 31 32 36 37 rhmpropd SCRingRSubRingSWRingHomS𝑠B1𝑜=1𝑜mPolyURingHomS𝑠B1𝑜
39 21 38 eleqtrrd SCRingRSubRingS1𝑜evalSubSRWRingHomS𝑠B1𝑜
40 rhmco xBB1𝑜xyB1𝑜×yS𝑠B1𝑜RingHomT1𝑜evalSubSRWRingHomS𝑠B1𝑜xBB1𝑜xyB1𝑜×y1𝑜evalSubSRWRingHomT
41 15 39 40 syl2an2r SCRingRSubRingSxBB1𝑜xyB1𝑜×y1𝑜evalSubSRWRingHomT
42 13 41 eqeltrd SCRingRSubRingSQWRingHomT