Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evls1rhm.q | |
|
evls1rhm.b | |
||
evls1rhm.t | |
||
evls1rhm.u | |
||
evls1rhm.w | |
||
Assertion | evls1rhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1rhm.q | |
|
2 | evls1rhm.b | |
|
3 | evls1rhm.t | |
|
4 | evls1rhm.u | |
|
5 | evls1rhm.w | |
|
6 | 2 | subrgss | |
7 | 6 | adantl | |
8 | elpwg | |
|
9 | 8 | adantl | |
10 | 7 9 | mpbird | |
11 | eqid | |
|
12 | 1 11 2 | evls1fval | |
13 | 10 12 | syldan | |
14 | eqid | |
|
15 | 2 3 14 | evls1rhmlem | |
16 | 1on | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 17 18 4 19 2 | evlsrhm | |
21 | 16 20 | mp3an1 | |
22 | eqidd | |
|
23 | eqidd | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | 5 24 25 | ply1bas | |
27 | 26 | a1i | |
28 | eqid | |
|
29 | 5 18 28 | ply1plusg | |
30 | 29 | a1i | |
31 | 30 | oveqdr | |
32 | eqidd | |
|
33 | eqid | |
|
34 | 5 18 33 | ply1mulr | |
35 | 34 | a1i | |
36 | 35 | oveqdr | |
37 | eqidd | |
|
38 | 22 23 27 23 31 32 36 37 | rhmpropd | |
39 | 21 38 | eleqtrrd | |
40 | rhmco | |
|
41 | 15 39 40 | syl2an2r | |
42 | 13 41 | eqeltrd | |