Metamath Proof Explorer


Theorem evls1fval

Description: Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019)

Ref Expression
Hypotheses evls1fval.q Q=SevalSub1R
evls1fval.e E=1𝑜evalSubS
evls1fval.b B=BaseS
Assertion evls1fval SVR𝒫BQ=xBB1𝑜xyB1𝑜×yER

Proof

Step Hyp Ref Expression
1 evls1fval.q Q=SevalSub1R
2 evls1fval.e E=1𝑜evalSubS
3 evls1fval.b B=BaseS
4 elex SVSV
5 4 adantr SVR𝒫BSV
6 simpr SVR𝒫BR𝒫B
7 ovex BB1𝑜V
8 7 mptex xBB1𝑜xyB1𝑜×yV
9 fvex ERV
10 8 9 coex xBB1𝑜xyB1𝑜×yERV
11 10 a1i SVR𝒫BxBB1𝑜xyB1𝑜×yERV
12 fveq2 s=SBases=BaseS
13 12 adantr s=Sr=RBases=BaseS
14 13 3 eqtr4di s=Sr=RBases=B
15 14 csbeq1d s=Sr=RBases/bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr=B/bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr
16 3 fvexi BV
17 16 a1i s=Sr=RBV
18 id b=Bb=B
19 oveq1 b=Bb1𝑜=B1𝑜
20 18 19 oveq12d b=Bbb1𝑜=BB1𝑜
21 mpteq1 b=Byb1𝑜×y=yB1𝑜×y
22 21 coeq2d b=Bxyb1𝑜×y=xyB1𝑜×y
23 20 22 mpteq12dv b=Bxbb1𝑜xyb1𝑜×y=xBB1𝑜xyB1𝑜×y
24 23 coeq1d b=Bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr=xBB1𝑜xyB1𝑜×y1𝑜evalSubsr
25 24 adantl s=Sr=Rb=Bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr=xBB1𝑜xyB1𝑜×y1𝑜evalSubsr
26 17 25 csbied s=Sr=RB/bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr=xBB1𝑜xyB1𝑜×y1𝑜evalSubsr
27 oveq2 s=S1𝑜evalSubs=1𝑜evalSubS
28 27 2 eqtr4di s=S1𝑜evalSubs=E
29 28 adantr s=Sr=R1𝑜evalSubs=E
30 simpr s=Sr=Rr=R
31 29 30 fveq12d s=Sr=R1𝑜evalSubsr=ER
32 31 coeq2d s=Sr=RxBB1𝑜xyB1𝑜×y1𝑜evalSubsr=xBB1𝑜xyB1𝑜×yER
33 15 26 32 3eqtrd s=Sr=RBases/bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr=xBB1𝑜xyB1𝑜×yER
34 12 3 eqtr4di s=SBases=B
35 34 pweqd s=S𝒫Bases=𝒫B
36 df-evls1 evalSub1=sV,r𝒫BasesBases/bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr
37 33 35 36 ovmpox SVR𝒫BxBB1𝑜xyB1𝑜×yERVSevalSub1R=xBB1𝑜xyB1𝑜×yER
38 5 6 11 37 syl3anc SVR𝒫BSevalSub1R=xBB1𝑜xyB1𝑜×yER
39 1 38 eqtrid SVR𝒫BQ=xBB1𝑜xyB1𝑜×yER