Metamath Proof Explorer


Theorem evls1pw

Description: Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024)

Ref Expression
Hypotheses evls1pw.q Q = S evalSub 1 R
evls1pw.u U = S 𝑠 R
evls1pw.w W = Poly 1 U
evls1pw.g G = mulGrp W
evls1pw.k K = Base S
evls1pw.b B = Base W
evls1pw.e × ˙ = G
evls1pw.s φ S CRing
evls1pw.r φ R SubRing S
evls1pw.n φ N 0
evls1pw.x φ X B
Assertion evls1pw φ Q N × ˙ X = N mulGrp S 𝑠 K Q X

Proof

Step Hyp Ref Expression
1 evls1pw.q Q = S evalSub 1 R
2 evls1pw.u U = S 𝑠 R
3 evls1pw.w W = Poly 1 U
4 evls1pw.g G = mulGrp W
5 evls1pw.k K = Base S
6 evls1pw.b B = Base W
7 evls1pw.e × ˙ = G
8 evls1pw.s φ S CRing
9 evls1pw.r φ R SubRing S
10 evls1pw.n φ N 0
11 evls1pw.x φ X B
12 eqid S 𝑠 K = S 𝑠 K
13 1 5 12 2 3 evls1rhm S CRing R SubRing S Q W RingHom S 𝑠 K
14 8 9 13 syl2anc φ Q W RingHom S 𝑠 K
15 eqid mulGrp S 𝑠 K = mulGrp S 𝑠 K
16 4 15 rhmmhm Q W RingHom S 𝑠 K Q G MndHom mulGrp S 𝑠 K
17 14 16 syl φ Q G MndHom mulGrp S 𝑠 K
18 4 6 mgpbas B = Base G
19 eqid mulGrp S 𝑠 K = mulGrp S 𝑠 K
20 18 7 19 mhmmulg Q G MndHom mulGrp S 𝑠 K N 0 X B Q N × ˙ X = N mulGrp S 𝑠 K Q X
21 17 10 11 20 syl3anc φ Q N × ˙ X = N mulGrp S 𝑠 K Q X