Metamath Proof Explorer


Theorem pwsexpg

Description: Value of a group exponentiation in a structure power. Compare pwsmulg . (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses pwsexpg.y 𝑌 = ( 𝑅s 𝐼 )
pwsexpg.b 𝐵 = ( Base ‘ 𝑌 )
pwsexpg.m 𝑀 = ( mulGrp ‘ 𝑌 )
pwsexpg.t 𝑇 = ( mulGrp ‘ 𝑅 )
pwsexpg.s = ( .g𝑀 )
pwsexpg.g · = ( .g𝑇 )
pwsexpg.r ( 𝜑𝑅 ∈ Ring )
pwsexpg.i ( 𝜑𝐼𝑉 )
pwsexpg.n ( 𝜑𝑁 ∈ ℕ0 )
pwsexpg.x ( 𝜑𝑋𝐵 )
pwsexpg.a ( 𝜑𝐴𝐼 )
Assertion pwsexpg ( 𝜑 → ( ( 𝑁 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 pwsexpg.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsexpg.b 𝐵 = ( Base ‘ 𝑌 )
3 pwsexpg.m 𝑀 = ( mulGrp ‘ 𝑌 )
4 pwsexpg.t 𝑇 = ( mulGrp ‘ 𝑅 )
5 pwsexpg.s = ( .g𝑀 )
6 pwsexpg.g · = ( .g𝑇 )
7 pwsexpg.r ( 𝜑𝑅 ∈ Ring )
8 pwsexpg.i ( 𝜑𝐼𝑉 )
9 pwsexpg.n ( 𝜑𝑁 ∈ ℕ0 )
10 pwsexpg.x ( 𝜑𝑋𝐵 )
11 pwsexpg.a ( 𝜑𝐴𝐼 )
12 1 2 3 4 7 8 11 pwspjmhmmgpd ( 𝜑 → ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) )
13 3 2 mgpbas 𝐵 = ( Base ‘ 𝑀 )
14 13 5 6 mhmmulg ( ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ∧ 𝑁 ∈ ℕ0𝑋𝐵 ) → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 𝑁 𝑋 ) ) = ( 𝑁 · ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑋 ) ) )
15 12 9 10 14 syl3anc ( 𝜑 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 𝑁 𝑋 ) ) = ( 𝑁 · ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑋 ) ) )
16 1 pwsring ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → 𝑌 ∈ Ring )
17 7 8 16 syl2anc ( 𝜑𝑌 ∈ Ring )
18 3 ringmgp ( 𝑌 ∈ Ring → 𝑀 ∈ Mnd )
19 17 18 syl ( 𝜑𝑀 ∈ Mnd )
20 13 5 mulgnn0cl ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵 ) → ( 𝑁 𝑋 ) ∈ 𝐵 )
21 19 9 10 20 syl3anc ( 𝜑 → ( 𝑁 𝑋 ) ∈ 𝐵 )
22 fveq1 ( 𝑥 = ( 𝑁 𝑋 ) → ( 𝑥𝐴 ) = ( ( 𝑁 𝑋 ) ‘ 𝐴 ) )
23 eqid ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) = ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) )
24 fvex ( ( 𝑁 𝑋 ) ‘ 𝐴 ) ∈ V
25 22 23 24 fvmpt ( ( 𝑁 𝑋 ) ∈ 𝐵 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 𝑁 𝑋 ) ) = ( ( 𝑁 𝑋 ) ‘ 𝐴 ) )
26 21 25 syl ( 𝜑 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 𝑁 𝑋 ) ) = ( ( 𝑁 𝑋 ) ‘ 𝐴 ) )
27 fveq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴 ) = ( 𝑋𝐴 ) )
28 fvex ( 𝑋𝐴 ) ∈ V
29 27 23 28 fvmpt ( 𝑋𝐵 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑋 ) = ( 𝑋𝐴 ) )
30 10 29 syl ( 𝜑 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑋 ) = ( 𝑋𝐴 ) )
31 30 oveq2d ( 𝜑 → ( 𝑁 · ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑋 ) ) = ( 𝑁 · ( 𝑋𝐴 ) ) )
32 15 26 31 3eqtr3d ( 𝜑 → ( ( 𝑁 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋𝐴 ) ) )