| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsexpg.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwsexpg.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
pwsexpg.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) |
| 4 |
|
pwsexpg.t |
⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) |
| 5 |
|
pwsexpg.s |
⊢ ∙ = ( .g ‘ 𝑀 ) |
| 6 |
|
pwsexpg.g |
⊢ · = ( .g ‘ 𝑇 ) |
| 7 |
|
pwsexpg.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
|
pwsexpg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 9 |
|
pwsexpg.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 10 |
|
pwsexpg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 11 |
|
pwsexpg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) |
| 12 |
1 2 3 4 7 8 11
|
pwspjmhmmgpd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ) |
| 13 |
3 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 14 |
13 5 6
|
mhmmulg |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 15 |
12 9 10 14
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 16 |
1
|
pwsring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
| 17 |
7 8 16
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 18 |
3
|
ringmgp |
⊢ ( 𝑌 ∈ Ring → 𝑀 ∈ Mnd ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 20 |
13 5 19 9 10
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 ) |
| 21 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑁 ∙ 𝑋 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 22 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) |
| 23 |
|
fvex |
⊢ ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ∈ V |
| 24 |
21 22 23
|
fvmpt |
⊢ ( ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 25 |
20 24
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 26 |
|
fveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 27 |
|
fvex |
⊢ ( 𝑋 ‘ 𝐴 ) ∈ V |
| 28 |
26 22 27
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 29 |
10 28
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |
| 31 |
15 25 30
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |