| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsmulg.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwsmulg.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
pwsmulg.s |
⊢ ∙ = ( .g ‘ 𝑌 ) |
| 4 |
|
pwsmulg.t |
⊢ · = ( .g ‘ 𝑅 ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑅 ∈ Mnd ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝐼 ∈ 𝑉 ) |
| 7 |
|
simpr3 |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝐴 ∈ 𝐼 ) |
| 8 |
1 2
|
pwspjmhm |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |
| 9 |
5 6 7 8
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |
| 10 |
|
simpr1 |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑁 ∈ ℕ0 ) |
| 11 |
|
simpr2 |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑋 ∈ 𝐵 ) |
| 12 |
2 3 4
|
mhmmulg |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 13 |
9 10 11 12
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 14 |
1
|
pwsmnd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Mnd ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑌 ∈ Mnd ) |
| 16 |
2 3 15 10 11
|
mulgnn0cld |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 ) |
| 17 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑁 ∙ 𝑋 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) |
| 19 |
|
fvex |
⊢ ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ∈ V |
| 20 |
17 18 19
|
fvmpt |
⊢ ( ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 21 |
16 20
|
syl |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 22 |
|
fveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 23 |
|
fvex |
⊢ ( 𝑋 ‘ 𝐴 ) ∈ V |
| 24 |
22 18 23
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 25 |
11 24
|
syl |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |
| 27 |
13 21 26
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |