| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmmulg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mhmmulg.s |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mhmmulg.t |
⊢ × = ( .g ‘ 𝐻 ) |
| 4 |
|
fvoveq1 |
⊢ ( 𝑛 = 0 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 0 · 𝑋 ) ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑛 = 0 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 8 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 12 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 16 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 20 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 22 |
20 21
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 24 |
1 20 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 28 |
1 27
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 29 |
28
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 30 |
27 21 3
|
mulg0 |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) → ( 0 × ( 𝐹 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 0 × ( 𝐹 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
| 32 |
23 26 31
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 33 |
|
oveq1 |
⊢ ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 34 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐺 ∈ Mnd ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 38 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 39 |
1 2 38
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑚 + 1 ) · 𝑋 ) = ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 40 |
35 36 37 39
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · 𝑋 ) = ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) ) |
| 42 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 43 |
34
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑚 ∈ ℕ0 ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 46 |
1 2 43 44 45
|
mulgnn0cld |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
| 47 |
46
|
an32s |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
| 48 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 49 |
1 38 48
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( 𝑚 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 50 |
42 47 37 49
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 51 |
41 50
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 52 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐻 ∈ Mnd ) |
| 53 |
52
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐻 ∈ Mnd ) |
| 54 |
29
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 55 |
27 3 48
|
mulgnn0p1 |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 56 |
53 36 54 55
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 57 |
51 56
|
eqeq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 58 |
33 57
|
imbitrrid |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 59 |
58
|
expcom |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 60 |
59
|
a2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 61 |
7 11 15 19 32 60
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 62 |
61
|
3impib |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 63 |
62
|
3com12 |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |