Step |
Hyp |
Ref |
Expression |
1 |
|
pwsexpg.y |
|- Y = ( R ^s I ) |
2 |
|
pwsexpg.b |
|- B = ( Base ` Y ) |
3 |
|
pwsexpg.m |
|- M = ( mulGrp ` Y ) |
4 |
|
pwsexpg.t |
|- T = ( mulGrp ` R ) |
5 |
|
pwsexpg.s |
|- .xb = ( .g ` M ) |
6 |
|
pwsexpg.g |
|- .x. = ( .g ` T ) |
7 |
|
pwsexpg.r |
|- ( ph -> R e. Ring ) |
8 |
|
pwsexpg.i |
|- ( ph -> I e. V ) |
9 |
|
pwsexpg.n |
|- ( ph -> N e. NN0 ) |
10 |
|
pwsexpg.x |
|- ( ph -> X e. B ) |
11 |
|
pwsexpg.a |
|- ( ph -> A e. I ) |
12 |
1 2 3 4 7 8 11
|
pwspjmhmmgpd |
|- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) |
13 |
3 2
|
mgpbas |
|- B = ( Base ` M ) |
14 |
13 5 6
|
mhmmulg |
|- ( ( ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) /\ N e. NN0 /\ X e. B ) -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) ) |
15 |
12 9 10 14
|
syl3anc |
|- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) ) |
16 |
1
|
pwsring |
|- ( ( R e. Ring /\ I e. V ) -> Y e. Ring ) |
17 |
7 8 16
|
syl2anc |
|- ( ph -> Y e. Ring ) |
18 |
3
|
ringmgp |
|- ( Y e. Ring -> M e. Mnd ) |
19 |
17 18
|
syl |
|- ( ph -> M e. Mnd ) |
20 |
13 5
|
mulgnn0cl |
|- ( ( M e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N .xb X ) e. B ) |
21 |
19 9 10 20
|
syl3anc |
|- ( ph -> ( N .xb X ) e. B ) |
22 |
|
fveq1 |
|- ( x = ( N .xb X ) -> ( x ` A ) = ( ( N .xb X ) ` A ) ) |
23 |
|
eqid |
|- ( x e. B |-> ( x ` A ) ) = ( x e. B |-> ( x ` A ) ) |
24 |
|
fvex |
|- ( ( N .xb X ) ` A ) e. _V |
25 |
22 23 24
|
fvmpt |
|- ( ( N .xb X ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( ( N .xb X ) ` A ) ) |
26 |
21 25
|
syl |
|- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( ( N .xb X ) ` A ) ) |
27 |
|
fveq1 |
|- ( x = X -> ( x ` A ) = ( X ` A ) ) |
28 |
|
fvex |
|- ( X ` A ) e. _V |
29 |
27 23 28
|
fvmpt |
|- ( X e. B -> ( ( x e. B |-> ( x ` A ) ) ` X ) = ( X ` A ) ) |
30 |
10 29
|
syl |
|- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` X ) = ( X ` A ) ) |
31 |
30
|
oveq2d |
|- ( ph -> ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) = ( N .x. ( X ` A ) ) ) |
32 |
15 26 31
|
3eqtr3d |
|- ( ph -> ( ( N .xb X ) ` A ) = ( N .x. ( X ` A ) ) ) |