| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwspjmhmmgpd.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwspjmhmmgpd.b |
|- B = ( Base ` Y ) |
| 3 |
|
pwspjmhmmgpd.m |
|- M = ( mulGrp ` Y ) |
| 4 |
|
pwspjmhmmgpd.t |
|- T = ( mulGrp ` R ) |
| 5 |
|
pwspjmhmmgpd.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
pwspjmhmmgpd.i |
|- ( ph -> I e. V ) |
| 7 |
|
pwspjmhmmgpd.a |
|- ( ph -> A e. I ) |
| 8 |
3 2
|
mgpbas |
|- B = ( Base ` M ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
4 9
|
mgpbas |
|- ( Base ` R ) = ( Base ` T ) |
| 11 |
|
eqid |
|- ( .r ` Y ) = ( .r ` Y ) |
| 12 |
3 11
|
mgpplusg |
|- ( .r ` Y ) = ( +g ` M ) |
| 13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 14 |
4 13
|
mgpplusg |
|- ( .r ` R ) = ( +g ` T ) |
| 15 |
|
eqid |
|- ( 1r ` Y ) = ( 1r ` Y ) |
| 16 |
3 15
|
ringidval |
|- ( 1r ` Y ) = ( 0g ` M ) |
| 17 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 18 |
4 17
|
ringidval |
|- ( 1r ` R ) = ( 0g ` T ) |
| 19 |
1
|
pwsring |
|- ( ( R e. Ring /\ I e. V ) -> Y e. Ring ) |
| 20 |
5 6 19
|
syl2anc |
|- ( ph -> Y e. Ring ) |
| 21 |
3
|
ringmgp |
|- ( Y e. Ring -> M e. Mnd ) |
| 22 |
20 21
|
syl |
|- ( ph -> M e. Mnd ) |
| 23 |
4
|
ringmgp |
|- ( R e. Ring -> T e. Mnd ) |
| 24 |
5 23
|
syl |
|- ( ph -> T e. Mnd ) |
| 25 |
5
|
adantr |
|- ( ( ph /\ x e. B ) -> R e. Ring ) |
| 26 |
6
|
adantr |
|- ( ( ph /\ x e. B ) -> I e. V ) |
| 27 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 28 |
1 9 2 25 26 27
|
pwselbas |
|- ( ( ph /\ x e. B ) -> x : I --> ( Base ` R ) ) |
| 29 |
7
|
adantr |
|- ( ( ph /\ x e. B ) -> A e. I ) |
| 30 |
28 29
|
ffvelcdmd |
|- ( ( ph /\ x e. B ) -> ( x ` A ) e. ( Base ` R ) ) |
| 31 |
30
|
fmpttd |
|- ( ph -> ( x e. B |-> ( x ` A ) ) : B --> ( Base ` R ) ) |
| 32 |
5
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> R e. Ring ) |
| 33 |
6
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> I e. V ) |
| 34 |
|
simprl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
| 35 |
|
simprr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
| 36 |
1 2 32 33 34 35 13 11
|
pwsmulrval |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` Y ) b ) = ( a oF ( .r ` R ) b ) ) |
| 37 |
36
|
fveq1d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a ( .r ` Y ) b ) ` A ) = ( ( a oF ( .r ` R ) b ) ` A ) ) |
| 38 |
1 9 2 32 33 34
|
pwselbas |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a : I --> ( Base ` R ) ) |
| 39 |
38
|
ffnd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a Fn I ) |
| 40 |
1 9 2 32 33 35
|
pwselbas |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b : I --> ( Base ` R ) ) |
| 41 |
40
|
ffnd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b Fn I ) |
| 42 |
|
inidm |
|- ( I i^i I ) = I |
| 43 |
|
eqidd |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( a ` A ) = ( a ` A ) ) |
| 44 |
|
eqidd |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( b ` A ) = ( b ` A ) ) |
| 45 |
39 41 33 33 42 43 44
|
ofval |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( ( a oF ( .r ` R ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 46 |
7 45
|
mpidan |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a oF ( .r ` R ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 47 |
37 46
|
eqtrd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a ( .r ` Y ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 48 |
2 11
|
ringcl |
|- ( ( Y e. Ring /\ a e. B /\ b e. B ) -> ( a ( .r ` Y ) b ) e. B ) |
| 49 |
20 48
|
syl3an1 |
|- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` Y ) b ) e. B ) |
| 50 |
49
|
3expb |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` Y ) b ) e. B ) |
| 51 |
|
fveq1 |
|- ( x = ( a ( .r ` Y ) b ) -> ( x ` A ) = ( ( a ( .r ` Y ) b ) ` A ) ) |
| 52 |
|
eqid |
|- ( x e. B |-> ( x ` A ) ) = ( x e. B |-> ( x ` A ) ) |
| 53 |
|
fvex |
|- ( ( a ( .r ` Y ) b ) ` A ) e. _V |
| 54 |
51 52 53
|
fvmpt |
|- ( ( a ( .r ` Y ) b ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( a ( .r ` Y ) b ) ` A ) ) |
| 55 |
50 54
|
syl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( a ( .r ` Y ) b ) ` A ) ) |
| 56 |
|
fveq1 |
|- ( x = a -> ( x ` A ) = ( a ` A ) ) |
| 57 |
|
fvex |
|- ( a ` A ) e. _V |
| 58 |
56 52 57
|
fvmpt |
|- ( a e. B -> ( ( x e. B |-> ( x ` A ) ) ` a ) = ( a ` A ) ) |
| 59 |
34 58
|
syl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` a ) = ( a ` A ) ) |
| 60 |
|
fveq1 |
|- ( x = b -> ( x ` A ) = ( b ` A ) ) |
| 61 |
|
fvex |
|- ( b ` A ) e. _V |
| 62 |
60 52 61
|
fvmpt |
|- ( b e. B -> ( ( x e. B |-> ( x ` A ) ) ` b ) = ( b ` A ) ) |
| 63 |
35 62
|
syl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` b ) = ( b ` A ) ) |
| 64 |
59 63
|
oveq12d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( ( x e. B |-> ( x ` A ) ) ` a ) ( .r ` R ) ( ( x e. B |-> ( x ` A ) ) ` b ) ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 65 |
47 55 64
|
3eqtr4d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( ( x e. B |-> ( x ` A ) ) ` a ) ( .r ` R ) ( ( x e. B |-> ( x ` A ) ) ` b ) ) ) |
| 66 |
2 15
|
ringidcl |
|- ( Y e. Ring -> ( 1r ` Y ) e. B ) |
| 67 |
|
fveq1 |
|- ( x = ( 1r ` Y ) -> ( x ` A ) = ( ( 1r ` Y ) ` A ) ) |
| 68 |
|
fvex |
|- ( ( 1r ` Y ) ` A ) e. _V |
| 69 |
67 52 68
|
fvmpt |
|- ( ( 1r ` Y ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( ( 1r ` Y ) ` A ) ) |
| 70 |
20 66 69
|
3syl |
|- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( ( 1r ` Y ) ` A ) ) |
| 71 |
1 17
|
pws1 |
|- ( ( R e. Ring /\ I e. V ) -> ( I X. { ( 1r ` R ) } ) = ( 1r ` Y ) ) |
| 72 |
5 6 71
|
syl2anc |
|- ( ph -> ( I X. { ( 1r ` R ) } ) = ( 1r ` Y ) ) |
| 73 |
72
|
fveq1d |
|- ( ph -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( ( 1r ` Y ) ` A ) ) |
| 74 |
|
fvex |
|- ( 1r ` R ) e. _V |
| 75 |
74
|
fvconst2 |
|- ( A e. I -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( 1r ` R ) ) |
| 76 |
7 75
|
syl |
|- ( ph -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( 1r ` R ) ) |
| 77 |
70 73 76
|
3eqtr2d |
|- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( 1r ` R ) ) |
| 78 |
8 10 12 14 16 18 22 24 31 65 77
|
ismhmd |
|- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) |