Metamath Proof Explorer


Theorem pwspjmhmmgpd

Description: The projection given by pwspjmhm is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses pwspjmhmmgpd.y 𝑌 = ( 𝑅s 𝐼 )
pwspjmhmmgpd.b 𝐵 = ( Base ‘ 𝑌 )
pwspjmhmmgpd.m 𝑀 = ( mulGrp ‘ 𝑌 )
pwspjmhmmgpd.t 𝑇 = ( mulGrp ‘ 𝑅 )
pwspjmhmmgpd.r ( 𝜑𝑅 ∈ Ring )
pwspjmhmmgpd.i ( 𝜑𝐼𝑉 )
pwspjmhmmgpd.a ( 𝜑𝐴𝐼 )
Assertion pwspjmhmmgpd ( 𝜑 → ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) )

Proof

Step Hyp Ref Expression
1 pwspjmhmmgpd.y 𝑌 = ( 𝑅s 𝐼 )
2 pwspjmhmmgpd.b 𝐵 = ( Base ‘ 𝑌 )
3 pwspjmhmmgpd.m 𝑀 = ( mulGrp ‘ 𝑌 )
4 pwspjmhmmgpd.t 𝑇 = ( mulGrp ‘ 𝑅 )
5 pwspjmhmmgpd.r ( 𝜑𝑅 ∈ Ring )
6 pwspjmhmmgpd.i ( 𝜑𝐼𝑉 )
7 pwspjmhmmgpd.a ( 𝜑𝐴𝐼 )
8 3 2 mgpbas 𝐵 = ( Base ‘ 𝑀 )
9 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
10 4 9 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑇 )
11 eqid ( .r𝑌 ) = ( .r𝑌 )
12 3 11 mgpplusg ( .r𝑌 ) = ( +g𝑀 )
13 eqid ( .r𝑅 ) = ( .r𝑅 )
14 4 13 mgpplusg ( .r𝑅 ) = ( +g𝑇 )
15 eqid ( 1r𝑌 ) = ( 1r𝑌 )
16 3 15 ringidval ( 1r𝑌 ) = ( 0g𝑀 )
17 eqid ( 1r𝑅 ) = ( 1r𝑅 )
18 4 17 ringidval ( 1r𝑅 ) = ( 0g𝑇 )
19 1 pwsring ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → 𝑌 ∈ Ring )
20 5 6 19 syl2anc ( 𝜑𝑌 ∈ Ring )
21 3 ringmgp ( 𝑌 ∈ Ring → 𝑀 ∈ Mnd )
22 20 21 syl ( 𝜑𝑀 ∈ Mnd )
23 4 ringmgp ( 𝑅 ∈ Ring → 𝑇 ∈ Mnd )
24 5 23 syl ( 𝜑𝑇 ∈ Mnd )
25 5 adantr ( ( 𝜑𝑥𝐵 ) → 𝑅 ∈ Ring )
26 6 adantr ( ( 𝜑𝑥𝐵 ) → 𝐼𝑉 )
27 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
28 1 9 2 25 26 27 pwselbas ( ( 𝜑𝑥𝐵 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
29 7 adantr ( ( 𝜑𝑥𝐵 ) → 𝐴𝐼 )
30 28 29 ffvelrnd ( ( 𝜑𝑥𝐵 ) → ( 𝑥𝐴 ) ∈ ( Base ‘ 𝑅 ) )
31 30 fmpttd ( 𝜑 → ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) )
32 5 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑅 ∈ Ring )
33 6 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝐼𝑉 )
34 simprl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑎𝐵 )
35 simprr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑏𝐵 )
36 1 2 32 33 34 35 13 11 pwsmulrval ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( .r𝑌 ) 𝑏 ) = ( 𝑎f ( .r𝑅 ) 𝑏 ) )
37 36 fveq1d ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝑎 ( .r𝑌 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎f ( .r𝑅 ) 𝑏 ) ‘ 𝐴 ) )
38 1 9 2 32 33 34 pwselbas ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑎 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
39 38 ffnd ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑎 Fn 𝐼 )
40 1 9 2 32 33 35 pwselbas ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑏 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
41 40 ffnd ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑏 Fn 𝐼 )
42 inidm ( 𝐼𝐼 ) = 𝐼
43 eqidd ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) ∧ 𝐴𝐼 ) → ( 𝑎𝐴 ) = ( 𝑎𝐴 ) )
44 eqidd ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) ∧ 𝐴𝐼 ) → ( 𝑏𝐴 ) = ( 𝑏𝐴 ) )
45 39 41 33 33 42 43 44 ofval ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) ∧ 𝐴𝐼 ) → ( ( 𝑎f ( .r𝑅 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎𝐴 ) ( .r𝑅 ) ( 𝑏𝐴 ) ) )
46 7 45 mpidan ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝑎f ( .r𝑅 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎𝐴 ) ( .r𝑅 ) ( 𝑏𝐴 ) ) )
47 37 46 eqtrd ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝑎 ( .r𝑌 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎𝐴 ) ( .r𝑅 ) ( 𝑏𝐴 ) ) )
48 2 11 ringcl ( ( 𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( .r𝑌 ) 𝑏 ) ∈ 𝐵 )
49 20 48 syl3an1 ( ( 𝜑𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( .r𝑌 ) 𝑏 ) ∈ 𝐵 )
50 49 3expb ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( .r𝑌 ) 𝑏 ) ∈ 𝐵 )
51 fveq1 ( 𝑥 = ( 𝑎 ( .r𝑌 ) 𝑏 ) → ( 𝑥𝐴 ) = ( ( 𝑎 ( .r𝑌 ) 𝑏 ) ‘ 𝐴 ) )
52 eqid ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) = ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) )
53 fvex ( ( 𝑎 ( .r𝑌 ) 𝑏 ) ‘ 𝐴 ) ∈ V
54 51 52 53 fvmpt ( ( 𝑎 ( .r𝑌 ) 𝑏 ) ∈ 𝐵 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 𝑎 ( .r𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( .r𝑌 ) 𝑏 ) ‘ 𝐴 ) )
55 50 54 syl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 𝑎 ( .r𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( .r𝑌 ) 𝑏 ) ‘ 𝐴 ) )
56 fveq1 ( 𝑥 = 𝑎 → ( 𝑥𝐴 ) = ( 𝑎𝐴 ) )
57 fvex ( 𝑎𝐴 ) ∈ V
58 56 52 57 fvmpt ( 𝑎𝐵 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑎 ) = ( 𝑎𝐴 ) )
59 34 58 syl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑎 ) = ( 𝑎𝐴 ) )
60 fveq1 ( 𝑥 = 𝑏 → ( 𝑥𝐴 ) = ( 𝑏𝐴 ) )
61 fvex ( 𝑏𝐴 ) ∈ V
62 60 52 61 fvmpt ( 𝑏𝐵 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑏 ) = ( 𝑏𝐴 ) )
63 35 62 syl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑏 ) = ( 𝑏𝐴 ) )
64 59 63 oveq12d ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑎 ) ( .r𝑅 ) ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑏 ) ) = ( ( 𝑎𝐴 ) ( .r𝑅 ) ( 𝑏𝐴 ) ) )
65 47 55 64 3eqtr4d ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 𝑎 ( .r𝑌 ) 𝑏 ) ) = ( ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑎 ) ( .r𝑅 ) ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ 𝑏 ) ) )
66 2 15 ringidcl ( 𝑌 ∈ Ring → ( 1r𝑌 ) ∈ 𝐵 )
67 fveq1 ( 𝑥 = ( 1r𝑌 ) → ( 𝑥𝐴 ) = ( ( 1r𝑌 ) ‘ 𝐴 ) )
68 fvex ( ( 1r𝑌 ) ‘ 𝐴 ) ∈ V
69 67 52 68 fvmpt ( ( 1r𝑌 ) ∈ 𝐵 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 1r𝑌 ) ) = ( ( 1r𝑌 ) ‘ 𝐴 ) )
70 20 66 69 3syl ( 𝜑 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 1r𝑌 ) ) = ( ( 1r𝑌 ) ‘ 𝐴 ) )
71 1 17 pws1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 𝐼 × { ( 1r𝑅 ) } ) = ( 1r𝑌 ) )
72 5 6 71 syl2anc ( 𝜑 → ( 𝐼 × { ( 1r𝑅 ) } ) = ( 1r𝑌 ) )
73 72 fveq1d ( 𝜑 → ( ( 𝐼 × { ( 1r𝑅 ) } ) ‘ 𝐴 ) = ( ( 1r𝑌 ) ‘ 𝐴 ) )
74 fvex ( 1r𝑅 ) ∈ V
75 74 fvconst2 ( 𝐴𝐼 → ( ( 𝐼 × { ( 1r𝑅 ) } ) ‘ 𝐴 ) = ( 1r𝑅 ) )
76 7 75 syl ( 𝜑 → ( ( 𝐼 × { ( 1r𝑅 ) } ) ‘ 𝐴 ) = ( 1r𝑅 ) )
77 70 73 76 3eqtr2d ( 𝜑 → ( ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ‘ ( 1r𝑌 ) ) = ( 1r𝑅 ) )
78 8 10 12 14 16 18 22 24 31 65 77 ismhmd ( 𝜑 → ( 𝑥𝐵 ↦ ( 𝑥𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) )