| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwspjmhmmgpd.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwspjmhmmgpd.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
pwspjmhmmgpd.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) |
| 4 |
|
pwspjmhmmgpd.t |
⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) |
| 5 |
|
pwspjmhmmgpd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
pwspjmhmmgpd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 7 |
|
pwspjmhmmgpd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) |
| 8 |
3 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
4 9
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑇 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
| 12 |
3 11
|
mgpplusg |
⊢ ( .r ‘ 𝑌 ) = ( +g ‘ 𝑀 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 14 |
4 13
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑇 ) |
| 15 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
| 16 |
3 15
|
ringidval |
⊢ ( 1r ‘ 𝑌 ) = ( 0g ‘ 𝑀 ) |
| 17 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 18 |
4 17
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑇 ) |
| 19 |
1
|
pwsring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
| 20 |
5 6 19
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 21 |
3
|
ringmgp |
⊢ ( 𝑌 ∈ Ring → 𝑀 ∈ Mnd ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 23 |
4
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑇 ∈ Mnd ) |
| 24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 28 |
1 9 2 25 26 27
|
pwselbas |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝐼 ) |
| 30 |
28 29
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 |
30
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
| 34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 35 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 36 |
1 2 32 33 34 35 13 11
|
pwsmulrval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) = ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ) |
| 37 |
36
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 ) ) |
| 38 |
1 9 2 32 33 34
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 39 |
38
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 Fn 𝐼 ) |
| 40 |
1 9 2 32 33 35
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 41 |
40
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 Fn 𝐼 ) |
| 42 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 43 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝐴 ∈ 𝐼 ) → ( 𝑎 ‘ 𝐴 ) = ( 𝑎 ‘ 𝐴 ) ) |
| 44 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝐴 ∈ 𝐼 ) → ( 𝑏 ‘ 𝐴 ) = ( 𝑏 ‘ 𝐴 ) ) |
| 45 |
39 41 33 33 42 43 44
|
ofval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝐴 ∈ 𝐼 ) → ( ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 46 |
7 45
|
mpidan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 47 |
37 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 48 |
2 11
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 49 |
20 48
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 50 |
49
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 51 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) |
| 52 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) |
| 53 |
|
fvex |
⊢ ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ∈ V |
| 54 |
51 52 53
|
fvmpt |
⊢ ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) |
| 55 |
50 54
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) |
| 56 |
|
fveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ‘ 𝐴 ) = ( 𝑎 ‘ 𝐴 ) ) |
| 57 |
|
fvex |
⊢ ( 𝑎 ‘ 𝐴 ) ∈ V |
| 58 |
56 52 57
|
fvmpt |
⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) = ( 𝑎 ‘ 𝐴 ) ) |
| 59 |
34 58
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) = ( 𝑎 ‘ 𝐴 ) ) |
| 60 |
|
fveq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ‘ 𝐴 ) = ( 𝑏 ‘ 𝐴 ) ) |
| 61 |
|
fvex |
⊢ ( 𝑏 ‘ 𝐴 ) ∈ V |
| 62 |
60 52 61
|
fvmpt |
⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) = ( 𝑏 ‘ 𝐴 ) ) |
| 63 |
35 62
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) = ( 𝑏 ‘ 𝐴 ) ) |
| 64 |
59 63
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 65 |
47 55 64
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) ) ) |
| 66 |
2 15
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
| 67 |
|
fveq1 |
⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 68 |
|
fvex |
⊢ ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ∈ V |
| 69 |
67 52 68
|
fvmpt |
⊢ ( ( 1r ‘ 𝑌 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 70 |
20 66 69
|
3syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 71 |
1 17
|
pws1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) = ( 1r ‘ 𝑌 ) ) |
| 72 |
5 6 71
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) = ( 1r ‘ 𝑌 ) ) |
| 73 |
72
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 74 |
|
fvex |
⊢ ( 1r ‘ 𝑅 ) ∈ V |
| 75 |
74
|
fvconst2 |
⊢ ( 𝐴 ∈ 𝐼 → ( ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 76 |
7 75
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 77 |
70 73 76
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) ) = ( 1r ‘ 𝑅 ) ) |
| 78 |
8 10 12 14 16 18 22 24 31 65 77
|
ismhmd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ) |