Metamath Proof Explorer


Theorem pwsmulrval

Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsplusgval.y 𝑌 = ( 𝑅s 𝐼 )
pwsplusgval.b 𝐵 = ( Base ‘ 𝑌 )
pwsplusgval.r ( 𝜑𝑅𝑉 )
pwsplusgval.i ( 𝜑𝐼𝑊 )
pwsplusgval.f ( 𝜑𝐹𝐵 )
pwsplusgval.g ( 𝜑𝐺𝐵 )
pwsmulrval.a · = ( .r𝑅 )
pwsmulrval.p = ( .r𝑌 )
Assertion pwsmulrval ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹f · 𝐺 ) )

Proof

Step Hyp Ref Expression
1 pwsplusgval.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsplusgval.b 𝐵 = ( Base ‘ 𝑌 )
3 pwsplusgval.r ( 𝜑𝑅𝑉 )
4 pwsplusgval.i ( 𝜑𝐼𝑊 )
5 pwsplusgval.f ( 𝜑𝐹𝐵 )
6 pwsplusgval.g ( 𝜑𝐺𝐵 )
7 pwsmulrval.a · = ( .r𝑅 )
8 pwsmulrval.p = ( .r𝑌 )
9 eqid ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) )
10 eqid ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
11 fvexd ( 𝜑 → ( Scalar ‘ 𝑅 ) ∈ V )
12 fnconstg ( 𝑅𝑉 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 )
13 3 12 syl ( 𝜑 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 )
14 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
15 1 14 pwsval ( ( 𝑅𝑉𝐼𝑊 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
16 3 4 15 syl2anc ( 𝜑𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
17 16 fveq2d ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
18 2 17 syl5eq ( 𝜑𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
19 5 18 eleqtrd ( 𝜑𝐹 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
20 6 18 eleqtrd ( 𝜑𝐺 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
21 eqid ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
22 9 10 11 4 13 19 20 21 prdsmulrval ( 𝜑 → ( 𝐹 ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( .r ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺𝑥 ) ) ) )
23 fvconst2g ( ( 𝑅𝑉𝑥𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 )
24 3 23 sylan ( ( 𝜑𝑥𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 )
25 24 fveq2d ( ( 𝜑𝑥𝐼 ) → ( .r ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( .r𝑅 ) )
26 25 7 syl6eqr ( ( 𝜑𝑥𝐼 ) → ( .r ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = · )
27 26 oveqd ( ( 𝜑𝑥𝐼 ) → ( ( 𝐹𝑥 ) ( .r ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺𝑥 ) ) = ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) )
28 27 mpteq2dva ( 𝜑 → ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( .r ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) ) )
29 22 28 eqtrd ( 𝜑 → ( 𝐹 ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) ) )
30 16 fveq2d ( 𝜑 → ( .r𝑌 ) = ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
31 8 30 syl5eq ( 𝜑 = ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
32 31 oveqd ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹 ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) )
33 fvexd ( ( 𝜑𝑥𝐼 ) → ( 𝐹𝑥 ) ∈ V )
34 fvexd ( ( 𝜑𝑥𝐼 ) → ( 𝐺𝑥 ) ∈ V )
35 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
36 1 35 2 3 4 5 pwselbas ( 𝜑𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
37 36 feqmptd ( 𝜑𝐹 = ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) )
38 1 35 2 3 4 6 pwselbas ( 𝜑𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
39 38 feqmptd ( 𝜑𝐺 = ( 𝑥𝐼 ↦ ( 𝐺𝑥 ) ) )
40 4 33 34 37 39 offval2 ( 𝜑 → ( 𝐹f · 𝐺 ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) ) )
41 29 32 40 3eqtr4d ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹f · 𝐺 ) )