Metamath Proof Explorer


Theorem pwspjmhmmgpd

Description: The projection given by pwspjmhm is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses pwspjmhmmgpd.y Y = R 𝑠 I
pwspjmhmmgpd.b B = Base Y
pwspjmhmmgpd.m M = mulGrp Y
pwspjmhmmgpd.t T = mulGrp R
pwspjmhmmgpd.r φ R Ring
pwspjmhmmgpd.i φ I V
pwspjmhmmgpd.a φ A I
Assertion pwspjmhmmgpd φ x B x A M MndHom T

Proof

Step Hyp Ref Expression
1 pwspjmhmmgpd.y Y = R 𝑠 I
2 pwspjmhmmgpd.b B = Base Y
3 pwspjmhmmgpd.m M = mulGrp Y
4 pwspjmhmmgpd.t T = mulGrp R
5 pwspjmhmmgpd.r φ R Ring
6 pwspjmhmmgpd.i φ I V
7 pwspjmhmmgpd.a φ A I
8 3 2 mgpbas B = Base M
9 eqid Base R = Base R
10 4 9 mgpbas Base R = Base T
11 eqid Y = Y
12 3 11 mgpplusg Y = + M
13 eqid R = R
14 4 13 mgpplusg R = + T
15 eqid 1 Y = 1 Y
16 3 15 ringidval 1 Y = 0 M
17 eqid 1 R = 1 R
18 4 17 ringidval 1 R = 0 T
19 1 pwsring R Ring I V Y Ring
20 5 6 19 syl2anc φ Y Ring
21 3 ringmgp Y Ring M Mnd
22 20 21 syl φ M Mnd
23 4 ringmgp R Ring T Mnd
24 5 23 syl φ T Mnd
25 5 adantr φ x B R Ring
26 6 adantr φ x B I V
27 simpr φ x B x B
28 1 9 2 25 26 27 pwselbas φ x B x : I Base R
29 7 adantr φ x B A I
30 28 29 ffvelrnd φ x B x A Base R
31 30 fmpttd φ x B x A : B Base R
32 5 adantr φ a B b B R Ring
33 6 adantr φ a B b B I V
34 simprl φ a B b B a B
35 simprr φ a B b B b B
36 1 2 32 33 34 35 13 11 pwsmulrval φ a B b B a Y b = a R f b
37 36 fveq1d φ a B b B a Y b A = a R f b A
38 1 9 2 32 33 34 pwselbas φ a B b B a : I Base R
39 38 ffnd φ a B b B a Fn I
40 1 9 2 32 33 35 pwselbas φ a B b B b : I Base R
41 40 ffnd φ a B b B b Fn I
42 inidm I I = I
43 eqidd φ a B b B A I a A = a A
44 eqidd φ a B b B A I b A = b A
45 39 41 33 33 42 43 44 ofval φ a B b B A I a R f b A = a A R b A
46 7 45 mpidan φ a B b B a R f b A = a A R b A
47 37 46 eqtrd φ a B b B a Y b A = a A R b A
48 2 11 ringcl Y Ring a B b B a Y b B
49 20 48 syl3an1 φ a B b B a Y b B
50 49 3expb φ a B b B a Y b B
51 fveq1 x = a Y b x A = a Y b A
52 eqid x B x A = x B x A
53 fvex a Y b A V
54 51 52 53 fvmpt a Y b B x B x A a Y b = a Y b A
55 50 54 syl φ a B b B x B x A a Y b = a Y b A
56 fveq1 x = a x A = a A
57 fvex a A V
58 56 52 57 fvmpt a B x B x A a = a A
59 34 58 syl φ a B b B x B x A a = a A
60 fveq1 x = b x A = b A
61 fvex b A V
62 60 52 61 fvmpt b B x B x A b = b A
63 35 62 syl φ a B b B x B x A b = b A
64 59 63 oveq12d φ a B b B x B x A a R x B x A b = a A R b A
65 47 55 64 3eqtr4d φ a B b B x B x A a Y b = x B x A a R x B x A b
66 2 15 ringidcl Y Ring 1 Y B
67 fveq1 x = 1 Y x A = 1 Y A
68 fvex 1 Y A V
69 67 52 68 fvmpt 1 Y B x B x A 1 Y = 1 Y A
70 20 66 69 3syl φ x B x A 1 Y = 1 Y A
71 1 17 pws1 R Ring I V I × 1 R = 1 Y
72 5 6 71 syl2anc φ I × 1 R = 1 Y
73 72 fveq1d φ I × 1 R A = 1 Y A
74 fvex 1 R V
75 74 fvconst2 A I I × 1 R A = 1 R
76 7 75 syl φ I × 1 R A = 1 R
77 70 73 76 3eqtr2d φ x B x A 1 Y = 1 R
78 8 10 12 14 16 18 22 24 31 65 77 ismhmd φ x B x A M MndHom T