Step |
Hyp |
Ref |
Expression |
1 |
|
pwspjmhmmgpd.y |
|
2 |
|
pwspjmhmmgpd.b |
|
3 |
|
pwspjmhmmgpd.m |
|
4 |
|
pwspjmhmmgpd.t |
|
5 |
|
pwspjmhmmgpd.r |
|
6 |
|
pwspjmhmmgpd.i |
|
7 |
|
pwspjmhmmgpd.a |
|
8 |
3 2
|
mgpbas |
|
9 |
|
eqid |
|
10 |
4 9
|
mgpbas |
|
11 |
|
eqid |
|
12 |
3 11
|
mgpplusg |
|
13 |
|
eqid |
|
14 |
4 13
|
mgpplusg |
|
15 |
|
eqid |
|
16 |
3 15
|
ringidval |
|
17 |
|
eqid |
|
18 |
4 17
|
ringidval |
|
19 |
1
|
pwsring |
|
20 |
5 6 19
|
syl2anc |
|
21 |
3
|
ringmgp |
|
22 |
20 21
|
syl |
|
23 |
4
|
ringmgp |
|
24 |
5 23
|
syl |
|
25 |
5
|
adantr |
|
26 |
6
|
adantr |
|
27 |
|
simpr |
|
28 |
1 9 2 25 26 27
|
pwselbas |
|
29 |
7
|
adantr |
|
30 |
28 29
|
ffvelrnd |
|
31 |
30
|
fmpttd |
|
32 |
5
|
adantr |
|
33 |
6
|
adantr |
|
34 |
|
simprl |
|
35 |
|
simprr |
|
36 |
1 2 32 33 34 35 13 11
|
pwsmulrval |
|
37 |
36
|
fveq1d |
|
38 |
1 9 2 32 33 34
|
pwselbas |
|
39 |
38
|
ffnd |
|
40 |
1 9 2 32 33 35
|
pwselbas |
|
41 |
40
|
ffnd |
|
42 |
|
inidm |
|
43 |
|
eqidd |
|
44 |
|
eqidd |
|
45 |
39 41 33 33 42 43 44
|
ofval |
|
46 |
7 45
|
mpidan |
|
47 |
37 46
|
eqtrd |
|
48 |
2 11
|
ringcl |
|
49 |
20 48
|
syl3an1 |
|
50 |
49
|
3expb |
|
51 |
|
fveq1 |
|
52 |
|
eqid |
|
53 |
|
fvex |
|
54 |
51 52 53
|
fvmpt |
|
55 |
50 54
|
syl |
|
56 |
|
fveq1 |
|
57 |
|
fvex |
|
58 |
56 52 57
|
fvmpt |
|
59 |
34 58
|
syl |
|
60 |
|
fveq1 |
|
61 |
|
fvex |
|
62 |
60 52 61
|
fvmpt |
|
63 |
35 62
|
syl |
|
64 |
59 63
|
oveq12d |
|
65 |
47 55 64
|
3eqtr4d |
|
66 |
2 15
|
ringidcl |
|
67 |
|
fveq1 |
|
68 |
|
fvex |
|
69 |
67 52 68
|
fvmpt |
|
70 |
20 66 69
|
3syl |
|
71 |
1 17
|
pws1 |
|
72 |
5 6 71
|
syl2anc |
|
73 |
72
|
fveq1d |
|
74 |
|
fvex |
|
75 |
74
|
fvconst2 |
|
76 |
7 75
|
syl |
|
77 |
70 73 76
|
3eqtr2d |
|
78 |
8 10 12 14 16 18 22 24 31 65 77
|
ismhmd |
|