| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwspjmhmmgpd.y |
|
| 2 |
|
pwspjmhmmgpd.b |
|
| 3 |
|
pwspjmhmmgpd.m |
|
| 4 |
|
pwspjmhmmgpd.t |
|
| 5 |
|
pwspjmhmmgpd.r |
|
| 6 |
|
pwspjmhmmgpd.i |
|
| 7 |
|
pwspjmhmmgpd.a |
|
| 8 |
3 2
|
mgpbas |
|
| 9 |
|
eqid |
|
| 10 |
4 9
|
mgpbas |
|
| 11 |
|
eqid |
|
| 12 |
3 11
|
mgpplusg |
|
| 13 |
|
eqid |
|
| 14 |
4 13
|
mgpplusg |
|
| 15 |
|
eqid |
|
| 16 |
3 15
|
ringidval |
|
| 17 |
|
eqid |
|
| 18 |
4 17
|
ringidval |
|
| 19 |
1
|
pwsring |
|
| 20 |
5 6 19
|
syl2anc |
|
| 21 |
3
|
ringmgp |
|
| 22 |
20 21
|
syl |
|
| 23 |
4
|
ringmgp |
|
| 24 |
5 23
|
syl |
|
| 25 |
5
|
adantr |
|
| 26 |
6
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
1 9 2 25 26 27
|
pwselbas |
|
| 29 |
7
|
adantr |
|
| 30 |
28 29
|
ffvelcdmd |
|
| 31 |
30
|
fmpttd |
|
| 32 |
5
|
adantr |
|
| 33 |
6
|
adantr |
|
| 34 |
|
simprl |
|
| 35 |
|
simprr |
|
| 36 |
1 2 32 33 34 35 13 11
|
pwsmulrval |
|
| 37 |
36
|
fveq1d |
|
| 38 |
1 9 2 32 33 34
|
pwselbas |
|
| 39 |
38
|
ffnd |
|
| 40 |
1 9 2 32 33 35
|
pwselbas |
|
| 41 |
40
|
ffnd |
|
| 42 |
|
inidm |
|
| 43 |
|
eqidd |
|
| 44 |
|
eqidd |
|
| 45 |
39 41 33 33 42 43 44
|
ofval |
|
| 46 |
7 45
|
mpidan |
|
| 47 |
37 46
|
eqtrd |
|
| 48 |
2 11
|
ringcl |
|
| 49 |
20 48
|
syl3an1 |
|
| 50 |
49
|
3expb |
|
| 51 |
|
fveq1 |
|
| 52 |
|
eqid |
|
| 53 |
|
fvex |
|
| 54 |
51 52 53
|
fvmpt |
|
| 55 |
50 54
|
syl |
|
| 56 |
|
fveq1 |
|
| 57 |
|
fvex |
|
| 58 |
56 52 57
|
fvmpt |
|
| 59 |
34 58
|
syl |
|
| 60 |
|
fveq1 |
|
| 61 |
|
fvex |
|
| 62 |
60 52 61
|
fvmpt |
|
| 63 |
35 62
|
syl |
|
| 64 |
59 63
|
oveq12d |
|
| 65 |
47 55 64
|
3eqtr4d |
|
| 66 |
2 15
|
ringidcl |
|
| 67 |
|
fveq1 |
|
| 68 |
|
fvex |
|
| 69 |
67 52 68
|
fvmpt |
|
| 70 |
20 66 69
|
3syl |
|
| 71 |
1 17
|
pws1 |
|
| 72 |
5 6 71
|
syl2anc |
|
| 73 |
72
|
fveq1d |
|
| 74 |
|
fvex |
|
| 75 |
74
|
fvconst2 |
|
| 76 |
7 75
|
syl |
|
| 77 |
70 73 76
|
3eqtr2d |
|
| 78 |
8 10 12 14 16 18 22 24 31 65 77
|
ismhmd |
|