Metamath Proof Explorer


Theorem pwspjmhm

Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses pwspjmhm.y Y=R𝑠I
pwspjmhm.b B=BaseY
Assertion pwspjmhm RMndIVAIxBxAYMndHomR

Proof

Step Hyp Ref Expression
1 pwspjmhm.y Y=R𝑠I
2 pwspjmhm.b B=BaseY
3 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
4 eqid BaseScalarR𝑠I×R=BaseScalarR𝑠I×R
5 simp2 RMndIVAIIV
6 fvexd RMndIVAIScalarRV
7 fconst6g RMndI×R:IMnd
8 7 3ad2ant1 RMndIVAII×R:IMnd
9 simp3 RMndIVAIAI
10 3 4 5 6 8 9 prdspjmhm RMndIVAIxBaseScalarR𝑠I×RxAScalarR𝑠I×RMndHomI×RA
11 eqid ScalarR=ScalarR
12 1 11 pwsval RMndIVY=ScalarR𝑠I×R
13 12 3adant3 RMndIVAIY=ScalarR𝑠I×R
14 13 fveq2d RMndIVAIBaseY=BaseScalarR𝑠I×R
15 2 14 eqtrid RMndIVAIB=BaseScalarR𝑠I×R
16 15 mpteq1d RMndIVAIxBxA=xBaseScalarR𝑠I×RxA
17 fvconst2g RMndAII×RA=R
18 17 3adant2 RMndIVAII×RA=R
19 18 eqcomd RMndIVAIR=I×RA
20 13 19 oveq12d RMndIVAIYMndHomR=ScalarR𝑠I×RMndHomI×RA
21 10 16 20 3eltr4d RMndIVAIxBxAYMndHomR