Step |
Hyp |
Ref |
Expression |
1 |
|
pwsdiagmhm.y |
|
2 |
|
pwsdiagmhm.b |
|
3 |
|
pwsdiagmhm.f |
|
4 |
|
simpl |
|
5 |
1
|
pwsmnd |
|
6 |
2
|
fvexi |
|
7 |
3
|
fdiagfn |
|
8 |
6 7
|
mpan |
|
9 |
8
|
adantl |
|
10 |
1 2
|
pwsbas |
|
11 |
10
|
feq3d |
|
12 |
9 11
|
mpbid |
|
13 |
|
simplr |
|
14 |
|
eqid |
|
15 |
2 14
|
mndcl |
|
16 |
15
|
3expb |
|
17 |
16
|
adantlr |
|
18 |
3
|
fvdiagfn |
|
19 |
13 17 18
|
syl2anc |
|
20 |
3
|
fvdiagfn |
|
21 |
3
|
fvdiagfn |
|
22 |
20 21
|
oveqan12d |
|
23 |
22
|
anandis |
|
24 |
23
|
adantll |
|
25 |
|
eqid |
|
26 |
|
simpll |
|
27 |
1 2 25
|
pwsdiagel |
|
28 |
27
|
adantrr |
|
29 |
1 2 25
|
pwsdiagel |
|
30 |
29
|
adantrl |
|
31 |
|
eqid |
|
32 |
1 25 26 13 28 30 14 31
|
pwsplusgval |
|
33 |
|
id |
|
34 |
|
vex |
|
35 |
34
|
a1i |
|
36 |
|
vex |
|
37 |
36
|
a1i |
|
38 |
33 35 37
|
ofc12 |
|
39 |
38
|
ad2antlr |
|
40 |
24 32 39
|
3eqtrd |
|
41 |
19 40
|
eqtr4d |
|
42 |
41
|
ralrimivva |
|
43 |
|
simpr |
|
44 |
|
eqid |
|
45 |
2 44
|
mndidcl |
|
46 |
45
|
adantr |
|
47 |
3
|
fvdiagfn |
|
48 |
43 46 47
|
syl2anc |
|
49 |
1 44
|
pws0g |
|
50 |
48 49
|
eqtrd |
|
51 |
12 42 50
|
3jca |
|
52 |
|
eqid |
|
53 |
2 25 14 31 44 52
|
ismhm |
|
54 |
4 5 51 53
|
syl21anbrc |
|