Metamath Proof Explorer


Theorem pwsdiagel

Description: Membership of diagonal elements in the structure power base set. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsdiagel.y Y=R𝑠I
pwsdiagel.b B=BaseR
pwsdiagel.c C=BaseY
Assertion pwsdiagel RVIWABI×AC

Proof

Step Hyp Ref Expression
1 pwsdiagel.y Y=R𝑠I
2 pwsdiagel.b B=BaseR
3 pwsdiagel.c C=BaseY
4 fconst6g ABI×A:IB
5 4 adantl RVIWABI×A:IB
6 1 2 3 pwselbasb RVIWI×ACI×A:IB
7 6 adantr RVIWABI×ACI×A:IB
8 5 7 mpbird RVIWABI×AC