Metamath Proof Explorer


Theorem fdiagfn

Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fdiagfn.f F=xBI×x
Assertion fdiagfn BVIWF:BBI

Proof

Step Hyp Ref Expression
1 fdiagfn.f F=xBI×x
2 fconst6g xBI×x:IB
3 2 adantl BVIWxBI×x:IB
4 elmapg BVIWI×xBII×x:IB
5 4 adantr BVIWxBI×xBII×x:IB
6 3 5 mpbird BVIWxBI×xBI
7 6 1 fmptd BVIWF:BBI