| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdiagfn.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐼  ×  { 𝑥 } ) ) | 
						
							| 2 |  | fconst6g | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝐼  ×  { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐼  ×  { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) | 
						
							| 4 |  | elmapg | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  ( ( 𝐼  ×  { 𝑥 } )  ∈  ( 𝐵  ↑m  𝐼 )  ↔  ( 𝐼  ×  { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝐼  ×  { 𝑥 } )  ∈  ( 𝐵  ↑m  𝐼 )  ↔  ( 𝐼  ×  { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) ) | 
						
							| 6 | 3 5 | mpbird | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐼  ×  { 𝑥 } )  ∈  ( 𝐵  ↑m  𝐼 ) ) | 
						
							| 7 | 6 1 | fmptd | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  𝐹 : 𝐵 ⟶ ( 𝐵  ↑m  𝐼 ) ) |