Metamath Proof Explorer


Theorem ismhmd

Description: Deduction version of ismhm . (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses ismhmd.b
|- B = ( Base ` S )
ismhmd.c
|- C = ( Base ` T )
ismhmd.p
|- .+ = ( +g ` S )
ismhmd.q
|- .+^ = ( +g ` T )
ismhmd.0
|- .0. = ( 0g ` S )
ismhmd.z
|- Z = ( 0g ` T )
ismhmd.s
|- ( ph -> S e. Mnd )
ismhmd.t
|- ( ph -> T e. Mnd )
ismhmd.f
|- ( ph -> F : B --> C )
ismhmd.a
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
ismhmd.h
|- ( ph -> ( F ` .0. ) = Z )
Assertion ismhmd
|- ( ph -> F e. ( S MndHom T ) )

Proof

Step Hyp Ref Expression
1 ismhmd.b
 |-  B = ( Base ` S )
2 ismhmd.c
 |-  C = ( Base ` T )
3 ismhmd.p
 |-  .+ = ( +g ` S )
4 ismhmd.q
 |-  .+^ = ( +g ` T )
5 ismhmd.0
 |-  .0. = ( 0g ` S )
6 ismhmd.z
 |-  Z = ( 0g ` T )
7 ismhmd.s
 |-  ( ph -> S e. Mnd )
8 ismhmd.t
 |-  ( ph -> T e. Mnd )
9 ismhmd.f
 |-  ( ph -> F : B --> C )
10 ismhmd.a
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
11 ismhmd.h
 |-  ( ph -> ( F ` .0. ) = Z )
12 10 ralrimivva
 |-  ( ph -> A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
13 9 12 11 3jca
 |-  ( ph -> ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` .0. ) = Z ) )
14 1 2 3 4 5 6 ismhm
 |-  ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` .0. ) = Z ) ) )
15 7 8 13 14 syl21anbrc
 |-  ( ph -> F e. ( S MndHom T ) )