Metamath Proof Explorer


Theorem pwsgprod

Description: Finite products in a power structure are taken componentwise. Compare pwsgsum . (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses pwsgprod.y 𝑌 = ( 𝑅s 𝐼 )
pwsgprod.b 𝐵 = ( Base ‘ 𝑅 )
pwsgprod.o 1 = ( 1r𝑌 )
pwsgprod.m 𝑀 = ( mulGrp ‘ 𝑌 )
pwsgprod.t 𝑇 = ( mulGrp ‘ 𝑅 )
pwsgprod.i ( 𝜑𝐼𝑉 )
pwsgprod.j ( 𝜑𝐽𝑊 )
pwsgprod.r ( 𝜑𝑅 ∈ CRing )
pwsgprod.f ( ( 𝜑 ∧ ( 𝑥𝐼𝑦𝐽 ) ) → 𝑈𝐵 )
pwsgprod.w ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 1 )
Assertion pwsgprod ( 𝜑 → ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑇 Σg ( 𝑦𝐽𝑈 ) ) ) )

Proof

Step Hyp Ref Expression
1 pwsgprod.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsgprod.b 𝐵 = ( Base ‘ 𝑅 )
3 pwsgprod.o 1 = ( 1r𝑌 )
4 pwsgprod.m 𝑀 = ( mulGrp ‘ 𝑌 )
5 pwsgprod.t 𝑇 = ( mulGrp ‘ 𝑅 )
6 pwsgprod.i ( 𝜑𝐼𝑉 )
7 pwsgprod.j ( 𝜑𝐽𝑊 )
8 pwsgprod.r ( 𝜑𝑅 ∈ CRing )
9 pwsgprod.f ( ( 𝜑 ∧ ( 𝑥𝐼𝑦𝐽 ) ) → 𝑈𝐵 )
10 pwsgprod.w ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 1 )
11 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
12 4 11 mgpbas ( Base ‘ 𝑌 ) = ( Base ‘ 𝑀 )
13 4 3 ringidval 1 = ( 0g𝑀 )
14 1 pwscrng ( ( 𝑅 ∈ CRing ∧ 𝐼𝑉 ) → 𝑌 ∈ CRing )
15 8 6 14 syl2anc ( 𝜑𝑌 ∈ CRing )
16 4 crngmgp ( 𝑌 ∈ CRing → 𝑀 ∈ CMnd )
17 15 16 syl ( 𝜑𝑀 ∈ CMnd )
18 8 adantr ( ( 𝜑𝑦𝐽 ) → 𝑅 ∈ CRing )
19 6 adantr ( ( 𝜑𝑦𝐽 ) → 𝐼𝑉 )
20 9 anassrs ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑦𝐽 ) → 𝑈𝐵 )
21 20 an32s ( ( ( 𝜑𝑦𝐽 ) ∧ 𝑥𝐼 ) → 𝑈𝐵 )
22 21 fmpttd ( ( 𝜑𝑦𝐽 ) → ( 𝑥𝐼𝑈 ) : 𝐼𝐵 )
23 1 2 11 18 19 22 pwselbasr ( ( 𝜑𝑦𝐽 ) → ( 𝑥𝐼𝑈 ) ∈ ( Base ‘ 𝑌 ) )
24 23 fmpttd ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) : 𝐽 ⟶ ( Base ‘ 𝑌 ) )
25 12 13 17 7 24 10 gsumcl ( 𝜑 → ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ∈ ( Base ‘ 𝑌 ) )
26 1 2 11 8 6 25 pwselbas ( 𝜑 → ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) : 𝐼𝐵 )
27 26 ffnd ( 𝜑 → ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) Fn 𝐼 )
28 nfcv 𝑥 𝑀
29 nfcv 𝑥 Σg
30 nfcv 𝑥 𝐽
31 nfmpt1 𝑥 ( 𝑥𝐼𝑈 )
32 30 31 nfmpt 𝑥 ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) )
33 28 29 32 nfov 𝑥 ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) )
34 33 dffn5f ( ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) Fn 𝐼 ↔ ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) ) )
35 27 34 sylib ( 𝜑 → ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) ) )
36 simpr ( ( 𝜑𝑥𝐼 ) → 𝑥𝐼 )
37 eqid ( 𝑥𝐼𝑈 ) = ( 𝑥𝐼𝑈 )
38 37 fvmpt2 ( ( 𝑥𝐼𝑈𝐵 ) → ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) = 𝑈 )
39 36 20 38 syl2an2r ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑦𝐽 ) → ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) = 𝑈 )
40 39 mpteq2dva ( ( 𝜑𝑥𝐼 ) → ( 𝑦𝐽 ↦ ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) ) = ( 𝑦𝐽𝑈 ) )
41 40 oveq2d ( ( 𝜑𝑥𝐼 ) → ( 𝑇 Σg ( 𝑦𝐽 ↦ ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) ) ) = ( 𝑇 Σg ( 𝑦𝐽𝑈 ) ) )
42 17 adantr ( ( 𝜑𝑥𝐼 ) → 𝑀 ∈ CMnd )
43 5 crngmgp ( 𝑅 ∈ CRing → 𝑇 ∈ CMnd )
44 8 43 syl ( 𝜑𝑇 ∈ CMnd )
45 44 cmnmndd ( 𝜑𝑇 ∈ Mnd )
46 45 adantr ( ( 𝜑𝑥𝐼 ) → 𝑇 ∈ Mnd )
47 7 adantr ( ( 𝜑𝑥𝐼 ) → 𝐽𝑊 )
48 8 crngringd ( 𝜑𝑅 ∈ Ring )
49 48 adantr ( ( 𝜑𝑥𝐼 ) → 𝑅 ∈ Ring )
50 6 adantr ( ( 𝜑𝑥𝐼 ) → 𝐼𝑉 )
51 1 11 4 5 49 50 36 pwspjmhmmgpd ( ( 𝜑𝑥𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎𝑥 ) ) ∈ ( 𝑀 MndHom 𝑇 ) )
52 23 adantlr ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑦𝐽 ) → ( 𝑥𝐼𝑈 ) ∈ ( Base ‘ 𝑌 ) )
53 10 adantr ( ( 𝜑𝑥𝐼 ) → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 1 )
54 fveq1 ( 𝑎 = ( 𝑥𝐼𝑈 ) → ( 𝑎𝑥 ) = ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) )
55 fveq1 ( 𝑎 = ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) → ( 𝑎𝑥 ) = ( ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) )
56 12 13 42 46 47 51 52 53 54 55 gsummhm2 ( ( 𝜑𝑥𝐼 ) → ( 𝑇 Σg ( 𝑦𝐽 ↦ ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) ) ) = ( ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) )
57 41 56 eqtr3d ( ( 𝜑𝑥𝐼 ) → ( 𝑇 Σg ( 𝑦𝐽𝑈 ) ) = ( ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) )
58 57 mpteq2dva ( 𝜑 → ( 𝑥𝐼 ↦ ( 𝑇 Σg ( 𝑦𝐽𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) ) )
59 35 58 eqtr4d ( 𝜑 → ( 𝑀 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑇 Σg ( 𝑦𝐽𝑈 ) ) ) )