| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsgprod.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwsgprod.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
pwsgprod.o |
⊢ 1 = ( 1r ‘ 𝑌 ) |
| 4 |
|
pwsgprod.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) |
| 5 |
|
pwsgprod.t |
⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) |
| 6 |
|
pwsgprod.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 7 |
|
pwsgprod.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
| 8 |
|
pwsgprod.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 9 |
|
pwsgprod.f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) |
| 10 |
|
pwsgprod.w |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 1 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 12 |
4 11
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑀 ) |
| 13 |
4 3
|
ringidval |
⊢ 1 = ( 0g ‘ 𝑀 ) |
| 14 |
1
|
pwscrng |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ CRing ) |
| 15 |
8 6 14
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
| 16 |
4
|
crngmgp |
⊢ ( 𝑌 ∈ CRing → 𝑀 ∈ CMnd ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑅 ∈ CRing ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝐼 ∈ 𝑉 ) |
| 20 |
9
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑈 ∈ 𝐵 ) |
| 21 |
20
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑈 ∈ 𝐵 ) |
| 22 |
21
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) : 𝐼 ⟶ 𝐵 ) |
| 23 |
1 2 11 18 19 22
|
pwselbasr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
| 24 |
23
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) : 𝐽 ⟶ ( Base ‘ 𝑌 ) ) |
| 25 |
12 13 17 7 24 10
|
gsumcl |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 26 |
1 2 11 8 6 25
|
pwselbas |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 27 |
26
|
ffnd |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑀 |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑥 Σg |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐽 |
| 31 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) |
| 32 |
30 31
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) |
| 33 |
28 29 32
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) |
| 34 |
33
|
dffn5f |
⊢ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ↔ ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 35 |
27 34
|
sylib |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 37 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) |
| 38 |
37
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑈 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
| 39 |
36 20 38
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
| 40 |
39
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 42 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑀 ∈ CMnd ) |
| 43 |
5
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑇 ∈ CMnd ) |
| 44 |
8 43
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
| 45 |
44
|
cmnmndd |
⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑇 ∈ Mnd ) |
| 47 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
| 48 |
8
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 50 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 51 |
1 11 4 5 49 50 36
|
pwspjmhmmgpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ) |
| 52 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
| 53 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 1 ) |
| 54 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) |
| 55 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
| 56 |
12 13 42 46 47 51 52 53 54 55
|
gsummhm2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
| 57 |
41 56
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
| 58 |
57
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 59 |
35 58
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |