Metamath Proof Explorer


Theorem pwsgsum

Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 3-Jul-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Hypotheses pwsgsum.y 𝑌 = ( 𝑅s 𝐼 )
pwsgsum.b 𝐵 = ( Base ‘ 𝑅 )
pwsgsum.z 0 = ( 0g𝑌 )
pwsgsum.i ( 𝜑𝐼𝑉 )
pwsgsum.j ( 𝜑𝐽𝑊 )
pwsgsum.r ( 𝜑𝑅 ∈ CMnd )
pwsgsum.f ( ( 𝜑 ∧ ( 𝑥𝐼𝑦𝐽 ) ) → 𝑈𝐵 )
pwsgsum.w ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 0 )
Assertion pwsgsum ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) ) )

Proof

Step Hyp Ref Expression
1 pwsgsum.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsgsum.b 𝐵 = ( Base ‘ 𝑅 )
3 pwsgsum.z 0 = ( 0g𝑌 )
4 pwsgsum.i ( 𝜑𝐼𝑉 )
5 pwsgsum.j ( 𝜑𝐽𝑊 )
6 pwsgsum.r ( 𝜑𝑅 ∈ CMnd )
7 pwsgsum.f ( ( 𝜑 ∧ ( 𝑥𝐼𝑦𝐽 ) ) → 𝑈𝐵 )
8 pwsgsum.w ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 0 )
9 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
10 1 9 pwsval ( ( 𝑅 ∈ CMnd ∧ 𝐼𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
11 6 4 10 syl2anc ( 𝜑𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
12 11 oveq1d ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) )
13 fconstmpt ( 𝐼 × { 𝑅 } ) = ( 𝑥𝐼𝑅 )
14 13 oveq2i ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝑥𝐼𝑅 ) )
15 eqid ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
16 fvexd ( 𝜑 → ( Scalar ‘ 𝑅 ) ∈ V )
17 6 adantr ( ( 𝜑𝑥𝐼 ) → 𝑅 ∈ CMnd )
18 11 fveq2d ( 𝜑 → ( 0g𝑌 ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
19 3 18 syl5eq ( 𝜑0 = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
20 8 19 breqtrd ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
21 14 2 15 4 5 16 17 7 20 prdsgsum ( 𝜑 → ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) ) )
22 12 21 eqtrd ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) ) )