Step |
Hyp |
Ref |
Expression |
1 |
|
pwsgsum.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
2 |
|
pwsgsum.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
pwsgsum.z |
⊢ 0 = ( 0g ‘ 𝑌 ) |
4 |
|
pwsgsum.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
pwsgsum.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
6 |
|
pwsgsum.r |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
7 |
|
pwsgsum.f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) |
8 |
|
pwsgsum.w |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
10 |
1 9
|
pwsval |
⊢ ( ( 𝑅 ∈ CMnd ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
11 |
6 4 10
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ) |
13 |
|
fconstmpt |
⊢ ( 𝐼 × { 𝑅 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) |
14 |
13
|
oveq2i |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
16 |
|
fvexd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑅 ) ∈ V ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CMnd ) |
18 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑌 ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
19 |
3 18
|
syl5eq |
⊢ ( 𝜑 → 0 = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
20 |
8 19
|
breqtrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
21 |
14 2 15 4 5 16 17 7 20
|
prdsgsum |
⊢ ( 𝜑 → ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
22 |
12 21
|
eqtrd |
⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |