Metamath Proof Explorer


Theorem prdsgsum

Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 3-Jul-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Hypotheses prdsgsum.y 𝑌 = ( 𝑆 Xs ( 𝑥𝐼𝑅 ) )
prdsgsum.b 𝐵 = ( Base ‘ 𝑅 )
prdsgsum.z 0 = ( 0g𝑌 )
prdsgsum.i ( 𝜑𝐼𝑉 )
prdsgsum.j ( 𝜑𝐽𝑊 )
prdsgsum.s ( 𝜑𝑆𝑋 )
prdsgsum.r ( ( 𝜑𝑥𝐼 ) → 𝑅 ∈ CMnd )
prdsgsum.f ( ( 𝜑 ∧ ( 𝑥𝐼𝑦𝐽 ) ) → 𝑈𝐵 )
prdsgsum.w ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 0 )
Assertion prdsgsum ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) ) )

Proof

Step Hyp Ref Expression
1 prdsgsum.y 𝑌 = ( 𝑆 Xs ( 𝑥𝐼𝑅 ) )
2 prdsgsum.b 𝐵 = ( Base ‘ 𝑅 )
3 prdsgsum.z 0 = ( 0g𝑌 )
4 prdsgsum.i ( 𝜑𝐼𝑉 )
5 prdsgsum.j ( 𝜑𝐽𝑊 )
6 prdsgsum.s ( 𝜑𝑆𝑋 )
7 prdsgsum.r ( ( 𝜑𝑥𝐼 ) → 𝑅 ∈ CMnd )
8 prdsgsum.f ( ( 𝜑 ∧ ( 𝑥𝐼𝑦𝐽 ) ) → 𝑈𝐵 )
9 prdsgsum.w ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 0 )
10 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
11 7 fmpttd ( 𝜑 → ( 𝑥𝐼𝑅 ) : 𝐼 ⟶ CMnd )
12 11 ffnd ( 𝜑 → ( 𝑥𝐼𝑅 ) Fn 𝐼 )
13 1 4 6 11 prdscmnd ( 𝜑𝑌 ∈ CMnd )
14 8 anassrs ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑦𝐽 ) → 𝑈𝐵 )
15 14 an32s ( ( ( 𝜑𝑦𝐽 ) ∧ 𝑥𝐼 ) → 𝑈𝐵 )
16 15 ralrimiva ( ( 𝜑𝑦𝐽 ) → ∀ 𝑥𝐼 𝑈𝐵 )
17 7 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 𝑅 ∈ CMnd )
18 1 10 6 4 17 2 prdsbasmpt2 ( 𝜑 → ( ( 𝑥𝐼𝑈 ) ∈ ( Base ‘ 𝑌 ) ↔ ∀ 𝑥𝐼 𝑈𝐵 ) )
19 18 adantr ( ( 𝜑𝑦𝐽 ) → ( ( 𝑥𝐼𝑈 ) ∈ ( Base ‘ 𝑌 ) ↔ ∀ 𝑥𝐼 𝑈𝐵 ) )
20 16 19 mpbird ( ( 𝜑𝑦𝐽 ) → ( 𝑥𝐼𝑈 ) ∈ ( Base ‘ 𝑌 ) )
21 20 fmpttd ( 𝜑 → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) : 𝐽 ⟶ ( Base ‘ 𝑌 ) )
22 10 3 13 5 21 9 gsumcl ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ∈ ( Base ‘ 𝑌 ) )
23 1 10 6 4 12 22 prdsbasfn ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) Fn 𝐼 )
24 nfcv 𝑥 𝑌
25 nfcv 𝑥 Σg
26 nfcv 𝑥 𝐽
27 nfmpt1 𝑥 ( 𝑥𝐼𝑈 )
28 26 27 nfmpt 𝑥 ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) )
29 24 25 28 nfov 𝑥 ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) )
30 29 dffn5f ( ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) Fn 𝐼 ↔ ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) ) )
31 23 30 sylib ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) ) )
32 simpr ( ( 𝜑𝑥𝐼 ) → 𝑥𝐼 )
33 eqid ( 𝑥𝐼𝑈 ) = ( 𝑥𝐼𝑈 )
34 33 fvmpt2 ( ( 𝑥𝐼𝑈𝐵 ) → ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) = 𝑈 )
35 32 14 34 syl2an2r ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑦𝐽 ) → ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) = 𝑈 )
36 35 mpteq2dva ( ( 𝜑𝑥𝐼 ) → ( 𝑦𝐽 ↦ ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) ) = ( 𝑦𝐽𝑈 ) )
37 36 oveq2d ( ( 𝜑𝑥𝐼 ) → ( 𝑅 Σg ( 𝑦𝐽 ↦ ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) ) ) = ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) )
38 13 adantr ( ( 𝜑𝑥𝐼 ) → 𝑌 ∈ CMnd )
39 cmnmnd ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd )
40 7 39 syl ( ( 𝜑𝑥𝐼 ) → 𝑅 ∈ Mnd )
41 5 adantr ( ( 𝜑𝑥𝐼 ) → 𝐽𝑊 )
42 4 adantr ( ( 𝜑𝑥𝐼 ) → 𝐼𝑉 )
43 6 adantr ( ( 𝜑𝑥𝐼 ) → 𝑆𝑋 )
44 40 fmpttd ( 𝜑 → ( 𝑥𝐼𝑅 ) : 𝐼 ⟶ Mnd )
45 44 adantr ( ( 𝜑𝑥𝐼 ) → ( 𝑥𝐼𝑅 ) : 𝐼 ⟶ Mnd )
46 1 10 42 43 45 32 prdspjmhm ( ( 𝜑𝑥𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎𝑥 ) ) ∈ ( 𝑌 MndHom ( ( 𝑥𝐼𝑅 ) ‘ 𝑥 ) ) )
47 eqid ( 𝑥𝐼𝑅 ) = ( 𝑥𝐼𝑅 )
48 47 fvmpt2 ( ( 𝑥𝐼𝑅 ∈ CMnd ) → ( ( 𝑥𝐼𝑅 ) ‘ 𝑥 ) = 𝑅 )
49 32 7 48 syl2anc ( ( 𝜑𝑥𝐼 ) → ( ( 𝑥𝐼𝑅 ) ‘ 𝑥 ) = 𝑅 )
50 49 oveq2d ( ( 𝜑𝑥𝐼 ) → ( 𝑌 MndHom ( ( 𝑥𝐼𝑅 ) ‘ 𝑥 ) ) = ( 𝑌 MndHom 𝑅 ) )
51 46 50 eleqtrd ( ( 𝜑𝑥𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎𝑥 ) ) ∈ ( 𝑌 MndHom 𝑅 ) )
52 20 adantlr ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑦𝐽 ) → ( 𝑥𝐼𝑈 ) ∈ ( Base ‘ 𝑌 ) )
53 9 adantr ( ( 𝜑𝑥𝐼 ) → ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) finSupp 0 )
54 fveq1 ( 𝑎 = ( 𝑥𝐼𝑈 ) → ( 𝑎𝑥 ) = ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) )
55 fveq1 ( 𝑎 = ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) → ( 𝑎𝑥 ) = ( ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) )
56 10 3 38 40 41 51 52 53 54 55 gsummhm2 ( ( 𝜑𝑥𝐼 ) → ( 𝑅 Σg ( 𝑦𝐽 ↦ ( ( 𝑥𝐼𝑈 ) ‘ 𝑥 ) ) ) = ( ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) )
57 37 56 eqtr3d ( ( 𝜑𝑥𝐼 ) → ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) = ( ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) )
58 57 mpteq2dva ( 𝜑 → ( 𝑥𝐼 ↦ ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) ‘ 𝑥 ) ) )
59 31 58 eqtr4d ( 𝜑 → ( 𝑌 Σg ( 𝑦𝐽 ↦ ( 𝑥𝐼𝑈 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑅 Σg ( 𝑦𝐽𝑈 ) ) ) )