| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsgsum.y |
|
| 2 |
|
prdsgsum.b |
|
| 3 |
|
prdsgsum.z |
|
| 4 |
|
prdsgsum.i |
|
| 5 |
|
prdsgsum.j |
|
| 6 |
|
prdsgsum.s |
|
| 7 |
|
prdsgsum.r |
|
| 8 |
|
prdsgsum.f |
|
| 9 |
|
prdsgsum.w |
|
| 10 |
|
eqid |
|
| 11 |
7
|
fmpttd |
|
| 12 |
11
|
ffnd |
|
| 13 |
1 4 6 11
|
prdscmnd |
|
| 14 |
8
|
anassrs |
|
| 15 |
14
|
an32s |
|
| 16 |
15
|
ralrimiva |
|
| 17 |
7
|
ralrimiva |
|
| 18 |
1 10 6 4 17 2
|
prdsbasmpt2 |
|
| 19 |
18
|
adantr |
|
| 20 |
16 19
|
mpbird |
|
| 21 |
20
|
fmpttd |
|
| 22 |
10 3 13 5 21 9
|
gsumcl |
|
| 23 |
1 10 6 4 12 22
|
prdsbasfn |
|
| 24 |
|
nfcv |
|
| 25 |
|
nfcv |
|
| 26 |
|
nfcv |
|
| 27 |
|
nfmpt1 |
|
| 28 |
26 27
|
nfmpt |
|
| 29 |
24 25 28
|
nfov |
|
| 30 |
29
|
dffn5f |
|
| 31 |
23 30
|
sylib |
|
| 32 |
|
simpr |
|
| 33 |
|
eqid |
|
| 34 |
33
|
fvmpt2 |
|
| 35 |
32 14 34
|
syl2an2r |
|
| 36 |
35
|
mpteq2dva |
|
| 37 |
36
|
oveq2d |
|
| 38 |
13
|
adantr |
|
| 39 |
|
cmnmnd |
|
| 40 |
7 39
|
syl |
|
| 41 |
5
|
adantr |
|
| 42 |
4
|
adantr |
|
| 43 |
6
|
adantr |
|
| 44 |
40
|
fmpttd |
|
| 45 |
44
|
adantr |
|
| 46 |
1 10 42 43 45 32
|
prdspjmhm |
|
| 47 |
|
eqid |
|
| 48 |
47
|
fvmpt2 |
|
| 49 |
32 7 48
|
syl2anc |
|
| 50 |
49
|
oveq2d |
|
| 51 |
46 50
|
eleqtrd |
|
| 52 |
20
|
adantlr |
|
| 53 |
9
|
adantr |
|
| 54 |
|
fveq1 |
|
| 55 |
|
fveq1 |
|
| 56 |
10 3 38 40 41 51 52 53 54 55
|
gsummhm2 |
|
| 57 |
37 56
|
eqtr3d |
|
| 58 |
57
|
mpteq2dva |
|
| 59 |
31 58
|
eqtr4d |
|