| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummhm2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummhm2.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsummhm2.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsummhm2.h |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 5 |
|
gsummhm2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
gsummhm2.k |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 7 |
|
gsummhm2.f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 8 |
|
gsummhm2.w |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) |
| 9 |
|
gsummhm2.1 |
⊢ ( 𝑥 = 𝑋 → 𝐶 = 𝐷 ) |
| 10 |
|
gsummhm2.2 |
⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → 𝐶 = 𝐸 ) |
| 11 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐵 ) |
| 12 |
1 2 3 4 5 6 11 8
|
gsummhm |
⊢ ( 𝜑 → ( 𝐻 Σg ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
| 15 |
7 13 14 9
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 Σg ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) ) |
| 17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
| 18 |
1 2 3 5 11 8
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ∈ 𝐵 ) |
| 19 |
10
|
eleq1d |
⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ 𝐸 ∈ ( Base ‘ 𝐻 ) ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 21 |
1 20
|
mhmf |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 22 |
6 21
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 23 |
17
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 24 |
22 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) ) |
| 25 |
19 24 18
|
rspcdva |
⊢ ( 𝜑 → 𝐸 ∈ ( Base ‘ 𝐻 ) ) |
| 26 |
17 10 18 25
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = 𝐸 ) |
| 27 |
12 16 26
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) = 𝐸 ) |