| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummhm2.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummhm2.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsummhm2.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummhm2.h |
|- ( ph -> H e. Mnd ) |
| 5 |
|
gsummhm2.a |
|- ( ph -> A e. V ) |
| 6 |
|
gsummhm2.k |
|- ( ph -> ( x e. B |-> C ) e. ( G MndHom H ) ) |
| 7 |
|
gsummhm2.f |
|- ( ( ph /\ k e. A ) -> X e. B ) |
| 8 |
|
gsummhm2.w |
|- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
| 9 |
|
gsummhm2.1 |
|- ( x = X -> C = D ) |
| 10 |
|
gsummhm2.2 |
|- ( x = ( G gsum ( k e. A |-> X ) ) -> C = E ) |
| 11 |
7
|
fmpttd |
|- ( ph -> ( k e. A |-> X ) : A --> B ) |
| 12 |
1 2 3 4 5 6 11 8
|
gsummhm |
|- ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) ) |
| 13 |
|
eqidd |
|- ( ph -> ( k e. A |-> X ) = ( k e. A |-> X ) ) |
| 14 |
|
eqidd |
|- ( ph -> ( x e. B |-> C ) = ( x e. B |-> C ) ) |
| 15 |
7 13 14 9
|
fmptco |
|- ( ph -> ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) = ( k e. A |-> D ) ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( H gsum ( k e. A |-> D ) ) ) |
| 17 |
|
eqid |
|- ( x e. B |-> C ) = ( x e. B |-> C ) |
| 18 |
1 2 3 5 11 8
|
gsumcl |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) e. B ) |
| 19 |
10
|
eleq1d |
|- ( x = ( G gsum ( k e. A |-> X ) ) -> ( C e. ( Base ` H ) <-> E e. ( Base ` H ) ) ) |
| 20 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 21 |
1 20
|
mhmf |
|- ( ( x e. B |-> C ) e. ( G MndHom H ) -> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
| 22 |
6 21
|
syl |
|- ( ph -> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
| 23 |
17
|
fmpt |
|- ( A. x e. B C e. ( Base ` H ) <-> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
| 24 |
22 23
|
sylibr |
|- ( ph -> A. x e. B C e. ( Base ` H ) ) |
| 25 |
19 24 18
|
rspcdva |
|- ( ph -> E e. ( Base ` H ) ) |
| 26 |
17 10 18 25
|
fvmptd3 |
|- ( ph -> ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) = E ) |
| 27 |
12 16 26
|
3eqtr3d |
|- ( ph -> ( H gsum ( k e. A |-> D ) ) = E ) |