Step |
Hyp |
Ref |
Expression |
1 |
|
gsummhm2.b |
|- B = ( Base ` G ) |
2 |
|
gsummhm2.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsummhm2.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummhm2.h |
|- ( ph -> H e. Mnd ) |
5 |
|
gsummhm2.a |
|- ( ph -> A e. V ) |
6 |
|
gsummhm2.k |
|- ( ph -> ( x e. B |-> C ) e. ( G MndHom H ) ) |
7 |
|
gsummhm2.f |
|- ( ( ph /\ k e. A ) -> X e. B ) |
8 |
|
gsummhm2.w |
|- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
9 |
|
gsummhm2.1 |
|- ( x = X -> C = D ) |
10 |
|
gsummhm2.2 |
|- ( x = ( G gsum ( k e. A |-> X ) ) -> C = E ) |
11 |
7
|
fmpttd |
|- ( ph -> ( k e. A |-> X ) : A --> B ) |
12 |
1 2 3 4 5 6 11 8
|
gsummhm |
|- ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) ) |
13 |
|
eqidd |
|- ( ph -> ( k e. A |-> X ) = ( k e. A |-> X ) ) |
14 |
|
eqidd |
|- ( ph -> ( x e. B |-> C ) = ( x e. B |-> C ) ) |
15 |
7 13 14 9
|
fmptco |
|- ( ph -> ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) = ( k e. A |-> D ) ) |
16 |
15
|
oveq2d |
|- ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( H gsum ( k e. A |-> D ) ) ) |
17 |
|
eqid |
|- ( x e. B |-> C ) = ( x e. B |-> C ) |
18 |
1 2 3 5 11 8
|
gsumcl |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) e. B ) |
19 |
10
|
eleq1d |
|- ( x = ( G gsum ( k e. A |-> X ) ) -> ( C e. ( Base ` H ) <-> E e. ( Base ` H ) ) ) |
20 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
21 |
1 20
|
mhmf |
|- ( ( x e. B |-> C ) e. ( G MndHom H ) -> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
22 |
6 21
|
syl |
|- ( ph -> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
23 |
17
|
fmpt |
|- ( A. x e. B C e. ( Base ` H ) <-> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
24 |
22 23
|
sylibr |
|- ( ph -> A. x e. B C e. ( Base ` H ) ) |
25 |
19 24 18
|
rspcdva |
|- ( ph -> E e. ( Base ` H ) ) |
26 |
17 10 18 25
|
fvmptd3 |
|- ( ph -> ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) = E ) |
27 |
12 16 26
|
3eqtr3d |
|- ( ph -> ( H gsum ( k e. A |-> D ) ) = E ) |