Metamath Proof Explorer


Theorem pwselbasr

Description: The reverse direction of pwselbasb : a function between the index and base set of a structure is an element of the structure power. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses pwselbasr.y 𝑌 = ( 𝑅s 𝐼 )
pwselbasr.b 𝐵 = ( Base ‘ 𝑅 )
pwselbasr.v 𝑉 = ( Base ‘ 𝑌 )
pwselbasr.r ( 𝜑𝑅𝑊 )
pwselbasr.i ( 𝜑𝐼𝑍 )
pwselbasr.x ( 𝜑𝑋 : 𝐼𝐵 )
Assertion pwselbasr ( 𝜑𝑋𝑉 )

Proof

Step Hyp Ref Expression
1 pwselbasr.y 𝑌 = ( 𝑅s 𝐼 )
2 pwselbasr.b 𝐵 = ( Base ‘ 𝑅 )
3 pwselbasr.v 𝑉 = ( Base ‘ 𝑌 )
4 pwselbasr.r ( 𝜑𝑅𝑊 )
5 pwselbasr.i ( 𝜑𝐼𝑍 )
6 pwselbasr.x ( 𝜑𝑋 : 𝐼𝐵 )
7 1 2 3 pwselbasb ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝑋𝑉𝑋 : 𝐼𝐵 ) )
8 4 5 7 syl2anc ( 𝜑 → ( 𝑋𝑉𝑋 : 𝐼𝐵 ) )
9 6 8 mpbird ( 𝜑𝑋𝑉 )