Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
pwselbasr
Metamath Proof Explorer
Description: The reverse direction of pwselbasb : a function between the index and
base set of a structure is an element of the structure power.
(Contributed by SN , 29-Jul-2024)
Ref
Expression
Hypotheses
pwselbasr.y
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 )
pwselbasr.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
pwselbasr.v
⊢ 𝑉 = ( Base ‘ 𝑌 )
pwselbasr.r
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 )
pwselbasr.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 )
pwselbasr.x
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐵 )
Assertion
pwselbasr
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 )
Proof
Step
Hyp
Ref
Expression
1
pwselbasr.y
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 )
2
pwselbasr.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
3
pwselbasr.v
⊢ 𝑉 = ( Base ‘ 𝑌 )
4
pwselbasr.r
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 )
5
pwselbasr.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 )
6
pwselbasr.x
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐵 )
7
1 2 3
pwselbasb
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) )
8
4 5 7
syl2anc
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) )
9
6 8
mpbird
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 )