Metamath Proof Explorer


Theorem pwselbasr

Description: The reverse direction of pwselbasb : a function between the index and base set of a structure is an element of the structure power. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses pwselbasr.y
|- Y = ( R ^s I )
pwselbasr.b
|- B = ( Base ` R )
pwselbasr.v
|- V = ( Base ` Y )
pwselbasr.r
|- ( ph -> R e. W )
pwselbasr.i
|- ( ph -> I e. Z )
pwselbasr.x
|- ( ph -> X : I --> B )
Assertion pwselbasr
|- ( ph -> X e. V )

Proof

Step Hyp Ref Expression
1 pwselbasr.y
 |-  Y = ( R ^s I )
2 pwselbasr.b
 |-  B = ( Base ` R )
3 pwselbasr.v
 |-  V = ( Base ` Y )
4 pwselbasr.r
 |-  ( ph -> R e. W )
5 pwselbasr.i
 |-  ( ph -> I e. Z )
6 pwselbasr.x
 |-  ( ph -> X : I --> B )
7 1 2 3 pwselbasb
 |-  ( ( R e. W /\ I e. Z ) -> ( X e. V <-> X : I --> B ) )
8 4 5 7 syl2anc
 |-  ( ph -> ( X e. V <-> X : I --> B ) )
9 6 8 mpbird
 |-  ( ph -> X e. V )