| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsgprod.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwsgprod.b |
|- B = ( Base ` R ) |
| 3 |
|
pwsgprod.o |
|- .1. = ( 1r ` Y ) |
| 4 |
|
pwsgprod.m |
|- M = ( mulGrp ` Y ) |
| 5 |
|
pwsgprod.t |
|- T = ( mulGrp ` R ) |
| 6 |
|
pwsgprod.i |
|- ( ph -> I e. V ) |
| 7 |
|
pwsgprod.j |
|- ( ph -> J e. W ) |
| 8 |
|
pwsgprod.r |
|- ( ph -> R e. CRing ) |
| 9 |
|
pwsgprod.f |
|- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
| 10 |
|
pwsgprod.w |
|- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .1. ) |
| 11 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 12 |
4 11
|
mgpbas |
|- ( Base ` Y ) = ( Base ` M ) |
| 13 |
4 3
|
ringidval |
|- .1. = ( 0g ` M ) |
| 14 |
1
|
pwscrng |
|- ( ( R e. CRing /\ I e. V ) -> Y e. CRing ) |
| 15 |
8 6 14
|
syl2anc |
|- ( ph -> Y e. CRing ) |
| 16 |
4
|
crngmgp |
|- ( Y e. CRing -> M e. CMnd ) |
| 17 |
15 16
|
syl |
|- ( ph -> M e. CMnd ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ y e. J ) -> R e. CRing ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ y e. J ) -> I e. V ) |
| 20 |
9
|
anassrs |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> U e. B ) |
| 21 |
20
|
an32s |
|- ( ( ( ph /\ y e. J ) /\ x e. I ) -> U e. B ) |
| 22 |
21
|
fmpttd |
|- ( ( ph /\ y e. J ) -> ( x e. I |-> U ) : I --> B ) |
| 23 |
1 2 11 18 19 22
|
pwselbasr |
|- ( ( ph /\ y e. J ) -> ( x e. I |-> U ) e. ( Base ` Y ) ) |
| 24 |
23
|
fmpttd |
|- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) : J --> ( Base ` Y ) ) |
| 25 |
12 13 17 7 24 10
|
gsumcl |
|- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) e. ( Base ` Y ) ) |
| 26 |
1 2 11 8 6 25
|
pwselbas |
|- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) : I --> B ) |
| 27 |
26
|
ffnd |
|- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) Fn I ) |
| 28 |
|
nfcv |
|- F/_ x M |
| 29 |
|
nfcv |
|- F/_ x gsum |
| 30 |
|
nfcv |
|- F/_ x J |
| 31 |
|
nfmpt1 |
|- F/_ x ( x e. I |-> U ) |
| 32 |
30 31
|
nfmpt |
|- F/_ x ( y e. J |-> ( x e. I |-> U ) ) |
| 33 |
28 29 32
|
nfov |
|- F/_ x ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) |
| 34 |
33
|
dffn5f |
|- ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) Fn I <-> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 35 |
27 34
|
sylib |
|- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 36 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
| 37 |
|
eqid |
|- ( x e. I |-> U ) = ( x e. I |-> U ) |
| 38 |
37
|
fvmpt2 |
|- ( ( x e. I /\ U e. B ) -> ( ( x e. I |-> U ) ` x ) = U ) |
| 39 |
36 20 38
|
syl2an2r |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( ( x e. I |-> U ) ` x ) = U ) |
| 40 |
39
|
mpteq2dva |
|- ( ( ph /\ x e. I ) -> ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) = ( y e. J |-> U ) ) |
| 41 |
40
|
oveq2d |
|- ( ( ph /\ x e. I ) -> ( T gsum ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) ) = ( T gsum ( y e. J |-> U ) ) ) |
| 42 |
17
|
adantr |
|- ( ( ph /\ x e. I ) -> M e. CMnd ) |
| 43 |
5
|
crngmgp |
|- ( R e. CRing -> T e. CMnd ) |
| 44 |
8 43
|
syl |
|- ( ph -> T e. CMnd ) |
| 45 |
44
|
cmnmndd |
|- ( ph -> T e. Mnd ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ x e. I ) -> T e. Mnd ) |
| 47 |
7
|
adantr |
|- ( ( ph /\ x e. I ) -> J e. W ) |
| 48 |
8
|
crngringd |
|- ( ph -> R e. Ring ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ x e. I ) -> R e. Ring ) |
| 50 |
6
|
adantr |
|- ( ( ph /\ x e. I ) -> I e. V ) |
| 51 |
1 11 4 5 49 50 36
|
pwspjmhmmgpd |
|- ( ( ph /\ x e. I ) -> ( a e. ( Base ` Y ) |-> ( a ` x ) ) e. ( M MndHom T ) ) |
| 52 |
23
|
adantlr |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( x e. I |-> U ) e. ( Base ` Y ) ) |
| 53 |
10
|
adantr |
|- ( ( ph /\ x e. I ) -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .1. ) |
| 54 |
|
fveq1 |
|- ( a = ( x e. I |-> U ) -> ( a ` x ) = ( ( x e. I |-> U ) ` x ) ) |
| 55 |
|
fveq1 |
|- ( a = ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) -> ( a ` x ) = ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
| 56 |
12 13 42 46 47 51 52 53 54 55
|
gsummhm2 |
|- ( ( ph /\ x e. I ) -> ( T gsum ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) ) = ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
| 57 |
41 56
|
eqtr3d |
|- ( ( ph /\ x e. I ) -> ( T gsum ( y e. J |-> U ) ) = ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
| 58 |
57
|
mpteq2dva |
|- ( ph -> ( x e. I |-> ( T gsum ( y e. J |-> U ) ) ) = ( x e. I |-> ( ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 59 |
35 58
|
eqtr4d |
|- ( ph -> ( M gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( T gsum ( y e. J |-> U ) ) ) ) |