Description: Finite products in a power structure are taken componentwise. Compare pwsgsum . (Contributed by SN, 30-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwsgprod.y | |
|
pwsgprod.b | |
||
pwsgprod.o | |
||
pwsgprod.m | |
||
pwsgprod.t | |
||
pwsgprod.i | |
||
pwsgprod.j | |
||
pwsgprod.r | |
||
pwsgprod.f | |
||
pwsgprod.w | |
||
Assertion | pwsgprod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsgprod.y | |
|
2 | pwsgprod.b | |
|
3 | pwsgprod.o | |
|
4 | pwsgprod.m | |
|
5 | pwsgprod.t | |
|
6 | pwsgprod.i | |
|
7 | pwsgprod.j | |
|
8 | pwsgprod.r | |
|
9 | pwsgprod.f | |
|
10 | pwsgprod.w | |
|
11 | eqid | |
|
12 | 4 11 | mgpbas | |
13 | 4 3 | ringidval | |
14 | 1 | pwscrng | |
15 | 8 6 14 | syl2anc | |
16 | 4 | crngmgp | |
17 | 15 16 | syl | |
18 | 8 | adantr | |
19 | 6 | adantr | |
20 | 9 | anassrs | |
21 | 20 | an32s | |
22 | 21 | fmpttd | |
23 | 1 2 11 18 19 22 | pwselbasr | |
24 | 23 | fmpttd | |
25 | 12 13 17 7 24 10 | gsumcl | |
26 | 1 2 11 8 6 25 | pwselbas | |
27 | 26 | ffnd | |
28 | nfcv | |
|
29 | nfcv | |
|
30 | nfcv | |
|
31 | nfmpt1 | |
|
32 | 30 31 | nfmpt | |
33 | 28 29 32 | nfov | |
34 | 33 | dffn5f | |
35 | 27 34 | sylib | |
36 | simpr | |
|
37 | eqid | |
|
38 | 37 | fvmpt2 | |
39 | 36 20 38 | syl2an2r | |
40 | 39 | mpteq2dva | |
41 | 40 | oveq2d | |
42 | 17 | adantr | |
43 | 5 | crngmgp | |
44 | 8 43 | syl | |
45 | 44 | cmnmndd | |
46 | 45 | adantr | |
47 | 7 | adantr | |
48 | 8 | crngringd | |
49 | 48 | adantr | |
50 | 6 | adantr | |
51 | 1 11 4 5 49 50 36 | pwspjmhmmgpd | |
52 | 23 | adantlr | |
53 | 10 | adantr | |
54 | fveq1 | |
|
55 | fveq1 | |
|
56 | 12 13 42 46 47 51 52 53 54 55 | gsummhm2 | |
57 | 41 56 | eqtr3d | |
58 | 57 | mpteq2dva | |
59 | 35 58 | eqtr4d | |