Step |
Hyp |
Ref |
Expression |
1 |
|
pwsgprod.y |
|
2 |
|
pwsgprod.b |
|
3 |
|
pwsgprod.o |
|
4 |
|
pwsgprod.m |
|
5 |
|
pwsgprod.t |
|
6 |
|
pwsgprod.i |
|
7 |
|
pwsgprod.j |
|
8 |
|
pwsgprod.r |
|
9 |
|
pwsgprod.f |
|
10 |
|
pwsgprod.w |
|
11 |
|
eqid |
|
12 |
4 11
|
mgpbas |
|
13 |
4 3
|
ringidval |
|
14 |
1
|
pwscrng |
|
15 |
8 6 14
|
syl2anc |
|
16 |
4
|
crngmgp |
|
17 |
15 16
|
syl |
|
18 |
8
|
adantr |
|
19 |
6
|
adantr |
|
20 |
9
|
anassrs |
|
21 |
20
|
an32s |
|
22 |
21
|
fmpttd |
|
23 |
1 2 11 18 19 22
|
pwselbasr |
|
24 |
23
|
fmpttd |
|
25 |
12 13 17 7 24 10
|
gsumcl |
|
26 |
1 2 11 8 6 25
|
pwselbas |
|
27 |
26
|
ffnd |
|
28 |
|
nfcv |
|
29 |
|
nfcv |
|
30 |
|
nfcv |
|
31 |
|
nfmpt1 |
|
32 |
30 31
|
nfmpt |
|
33 |
28 29 32
|
nfov |
|
34 |
33
|
dffn5f |
|
35 |
27 34
|
sylib |
|
36 |
|
simpr |
|
37 |
|
eqid |
|
38 |
37
|
fvmpt2 |
|
39 |
36 20 38
|
syl2an2r |
|
40 |
39
|
mpteq2dva |
|
41 |
40
|
oveq2d |
|
42 |
17
|
adantr |
|
43 |
5
|
crngmgp |
|
44 |
8 43
|
syl |
|
45 |
44
|
cmnmndd |
|
46 |
45
|
adantr |
|
47 |
7
|
adantr |
|
48 |
8
|
crngringd |
|
49 |
48
|
adantr |
|
50 |
6
|
adantr |
|
51 |
1 11 4 5 49 50 36
|
pwspjmhmmgpd |
|
52 |
23
|
adantlr |
|
53 |
10
|
adantr |
|
54 |
|
fveq1 |
|
55 |
|
fveq1 |
|
56 |
12 13 42 46 47 51 52 53 54 55
|
gsummhm2 |
|
57 |
41 56
|
eqtr3d |
|
58 |
57
|
mpteq2dva |
|
59 |
35 58
|
eqtr4d |
|