Metamath Proof Explorer


Theorem pwsgprod

Description: Finite products in a power structure are taken componentwise. Compare pwsgsum . (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses pwsgprod.y Y=R𝑠I
pwsgprod.b B=BaseR
pwsgprod.o 1˙=1Y
pwsgprod.m M=mulGrpY
pwsgprod.t T=mulGrpR
pwsgprod.i φIV
pwsgprod.j φJW
pwsgprod.r φRCRing
pwsgprod.f φxIyJUB
pwsgprod.w φfinSupp1˙yJxIU
Assertion pwsgprod φMyJxIU=xITyJU

Proof

Step Hyp Ref Expression
1 pwsgprod.y Y=R𝑠I
2 pwsgprod.b B=BaseR
3 pwsgprod.o 1˙=1Y
4 pwsgprod.m M=mulGrpY
5 pwsgprod.t T=mulGrpR
6 pwsgprod.i φIV
7 pwsgprod.j φJW
8 pwsgprod.r φRCRing
9 pwsgprod.f φxIyJUB
10 pwsgprod.w φfinSupp1˙yJxIU
11 eqid BaseY=BaseY
12 4 11 mgpbas BaseY=BaseM
13 4 3 ringidval 1˙=0M
14 1 pwscrng RCRingIVYCRing
15 8 6 14 syl2anc φYCRing
16 4 crngmgp YCRingMCMnd
17 15 16 syl φMCMnd
18 8 adantr φyJRCRing
19 6 adantr φyJIV
20 9 anassrs φxIyJUB
21 20 an32s φyJxIUB
22 21 fmpttd φyJxIU:IB
23 1 2 11 18 19 22 pwselbasr φyJxIUBaseY
24 23 fmpttd φyJxIU:JBaseY
25 12 13 17 7 24 10 gsumcl φMyJxIUBaseY
26 1 2 11 8 6 25 pwselbas φMyJxIU:IB
27 26 ffnd φMyJxIUFnI
28 nfcv _xM
29 nfcv _xΣ𝑔
30 nfcv _xJ
31 nfmpt1 _xxIU
32 30 31 nfmpt _xyJxIU
33 28 29 32 nfov _xMyJxIU
34 33 dffn5f MyJxIUFnIMyJxIU=xIMyJxIUx
35 27 34 sylib φMyJxIU=xIMyJxIUx
36 simpr φxIxI
37 eqid xIU=xIU
38 37 fvmpt2 xIUBxIUx=U
39 36 20 38 syl2an2r φxIyJxIUx=U
40 39 mpteq2dva φxIyJxIUx=yJU
41 40 oveq2d φxITyJxIUx=TyJU
42 17 adantr φxIMCMnd
43 5 crngmgp RCRingTCMnd
44 8 43 syl φTCMnd
45 44 cmnmndd φTMnd
46 45 adantr φxITMnd
47 7 adantr φxIJW
48 8 crngringd φRRing
49 48 adantr φxIRRing
50 6 adantr φxIIV
51 1 11 4 5 49 50 36 pwspjmhmmgpd φxIaBaseYaxMMndHomT
52 23 adantlr φxIyJxIUBaseY
53 10 adantr φxIfinSupp1˙yJxIU
54 fveq1 a=xIUax=xIUx
55 fveq1 a=MyJxIUax=MyJxIUx
56 12 13 42 46 47 51 52 53 54 55 gsummhm2 φxITyJxIUx=MyJxIUx
57 41 56 eqtr3d φxITyJU=MyJxIUx
58 57 mpteq2dva φxITyJU=xIMyJxIUx
59 35 58 eqtr4d φMyJxIU=xITyJU