| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsgprod.y |
|
| 2 |
|
pwsgprod.b |
|
| 3 |
|
pwsgprod.o |
|
| 4 |
|
pwsgprod.m |
|
| 5 |
|
pwsgprod.t |
|
| 6 |
|
pwsgprod.i |
|
| 7 |
|
pwsgprod.j |
|
| 8 |
|
pwsgprod.r |
|
| 9 |
|
pwsgprod.f |
|
| 10 |
|
pwsgprod.w |
|
| 11 |
|
eqid |
|
| 12 |
4 11
|
mgpbas |
|
| 13 |
4 3
|
ringidval |
|
| 14 |
1
|
pwscrng |
|
| 15 |
8 6 14
|
syl2anc |
|
| 16 |
4
|
crngmgp |
|
| 17 |
15 16
|
syl |
|
| 18 |
8
|
adantr |
|
| 19 |
6
|
adantr |
|
| 20 |
9
|
anassrs |
|
| 21 |
20
|
an32s |
|
| 22 |
21
|
fmpttd |
|
| 23 |
1 2 11 18 19 22
|
pwselbasr |
|
| 24 |
23
|
fmpttd |
|
| 25 |
12 13 17 7 24 10
|
gsumcl |
|
| 26 |
1 2 11 8 6 25
|
pwselbas |
|
| 27 |
26
|
ffnd |
|
| 28 |
|
nfcv |
|
| 29 |
|
nfcv |
|
| 30 |
|
nfcv |
|
| 31 |
|
nfmpt1 |
|
| 32 |
30 31
|
nfmpt |
|
| 33 |
28 29 32
|
nfov |
|
| 34 |
33
|
dffn5f |
|
| 35 |
27 34
|
sylib |
|
| 36 |
|
simpr |
|
| 37 |
|
eqid |
|
| 38 |
37
|
fvmpt2 |
|
| 39 |
36 20 38
|
syl2an2r |
|
| 40 |
39
|
mpteq2dva |
|
| 41 |
40
|
oveq2d |
|
| 42 |
17
|
adantr |
|
| 43 |
5
|
crngmgp |
|
| 44 |
8 43
|
syl |
|
| 45 |
44
|
cmnmndd |
|
| 46 |
45
|
adantr |
|
| 47 |
7
|
adantr |
|
| 48 |
8
|
crngringd |
|
| 49 |
48
|
adantr |
|
| 50 |
6
|
adantr |
|
| 51 |
1 11 4 5 49 50 36
|
pwspjmhmmgpd |
|
| 52 |
23
|
adantlr |
|
| 53 |
10
|
adantr |
|
| 54 |
|
fveq1 |
|
| 55 |
|
fveq1 |
|
| 56 |
12 13 42 46 47 51 52 53 54 55
|
gsummhm2 |
|
| 57 |
41 56
|
eqtr3d |
|
| 58 |
57
|
mpteq2dva |
|
| 59 |
35 58
|
eqtr4d |
|