Metamath Proof Explorer


Theorem cmnmndd

Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis cmnmndd.1 φGCMnd
Assertion cmnmndd φGMnd

Proof

Step Hyp Ref Expression
1 cmnmndd.1 φGCMnd
2 cmnmnd GCMndGMnd
3 1 2 syl φGMnd