Metamath Proof Explorer


Theorem cmnbascntr

Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses cmnbascntr.b B=BaseG
cmnbascntr.z Z=CntrG
Assertion cmnbascntr GCMndB=Z

Proof

Step Hyp Ref Expression
1 cmnbascntr.b B=BaseG
2 cmnbascntr.z Z=CntrG
3 eqid CntzG=CntzG
4 1 3 cntrval CntzGB=CntrG
5 ssid BB
6 eqid +G=+G
7 1 6 3 cntzval BBCntzGB=xB|yBx+Gy=y+Gx
8 5 7 ax-mp CntzGB=xB|yBx+Gy=y+Gx
9 2 4 8 3eqtr2i Z=xB|yBx+Gy=y+Gx
10 1 6 cmncom GCMndxByBx+Gy=y+Gx
11 10 3expa GCMndxByBx+Gy=y+Gx
12 11 ralrimiva GCMndxByBx+Gy=y+Gx
13 12 rabeqcda GCMndxB|yBx+Gy=y+Gx=B
14 9 13 eqtr2id GCMndB=Z