Metamath Proof Explorer


Theorem mplascl0

Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mplascl0.w 𝑊 = ( 𝐼 mPoly 𝑅 )
mplascl0.a 𝐴 = ( algSc ‘ 𝑊 )
mplascl0.o 𝑂 = ( 0g𝑅 )
mplascl0.0 0 = ( 0g𝑊 )
mplascl0.i ( 𝜑𝐼𝑉 )
mplascl0.r ( 𝜑𝑅 ∈ Ring )
Assertion mplascl0 ( 𝜑 → ( 𝐴𝑂 ) = 0 )

Proof

Step Hyp Ref Expression
1 mplascl0.w 𝑊 = ( 𝐼 mPoly 𝑅 )
2 mplascl0.a 𝐴 = ( algSc ‘ 𝑊 )
3 mplascl0.o 𝑂 = ( 0g𝑅 )
4 mplascl0.0 0 = ( 0g𝑊 )
5 mplascl0.i ( 𝜑𝐼𝑉 )
6 mplascl0.r ( 𝜑𝑅 ∈ Ring )
7 1 5 6 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑊 ) )
8 7 fveq2d ( 𝜑 → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
9 3 8 eqtrid ( 𝜑𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
10 9 fveq2d ( 𝜑 → ( 𝐴𝑂 ) = ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
11 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
12 1 5 6 mpllmodd ( 𝜑𝑊 ∈ LMod )
13 1 5 6 mplringd ( 𝜑𝑊 ∈ Ring )
14 2 11 12 13 ascl0 ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g𝑊 ) )
15 10 14 eqtrd ( 𝜑 → ( 𝐴𝑂 ) = ( 0g𝑊 ) )
16 15 4 eqtr4di ( 𝜑 → ( 𝐴𝑂 ) = 0 )