| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplascl0.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplascl0.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 3 |
|
mplascl0.o |
⊢ 𝑂 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplascl0.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
|
mplascl0.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
mplascl0.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
1 5 6
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 |
3 8
|
eqtrid |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 12 |
1 5 6
|
mpllmodd |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 13 |
1 5 6
|
mplringd |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 14 |
2 11 12 13
|
ascl0 |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 15 |
10 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = ( 0g ‘ 𝑊 ) ) |
| 16 |
15 4
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = 0 ) |