Metamath Proof Explorer


Theorem mpllmodd

Description: The polynomial ring is a left module. (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses mpllmodd.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mpllmodd.i ( 𝜑𝐼𝑉 )
mpllmodd.r ( 𝜑𝑅 ∈ Ring )
Assertion mpllmodd ( 𝜑𝑃 ∈ LMod )

Proof

Step Hyp Ref Expression
1 mpllmodd.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mpllmodd.i ( 𝜑𝐼𝑉 )
3 mpllmodd.r ( 𝜑𝑅 ∈ Ring )
4 1 mpllmod ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑃 ∈ LMod )
5 2 3 4 syl2anc ( 𝜑𝑃 ∈ LMod )