Metamath Proof Explorer


Theorem mpllmodd

Description: The polynomial ring is a left module. (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses mpllmodd.p
|- P = ( I mPoly R )
mpllmodd.i
|- ( ph -> I e. V )
mpllmodd.r
|- ( ph -> R e. Ring )
Assertion mpllmodd
|- ( ph -> P e. LMod )

Proof

Step Hyp Ref Expression
1 mpllmodd.p
 |-  P = ( I mPoly R )
2 mpllmodd.i
 |-  ( ph -> I e. V )
3 mpllmodd.r
 |-  ( ph -> R e. Ring )
4 1 mpllmod
 |-  ( ( I e. V /\ R e. Ring ) -> P e. LMod )
5 2 3 4 syl2anc
 |-  ( ph -> P e. LMod )