Metamath Proof Explorer


Theorem mplringd

Description: The polynomial ring is a ring. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mplringd.p
|- P = ( I mPoly R )
mplringd.i
|- ( ph -> I e. V )
mplringd.r
|- ( ph -> R e. Ring )
Assertion mplringd
|- ( ph -> P e. Ring )

Proof

Step Hyp Ref Expression
1 mplringd.p
 |-  P = ( I mPoly R )
2 mplringd.i
 |-  ( ph -> I e. V )
3 mplringd.r
 |-  ( ph -> R e. Ring )
4 1 mplring
 |-  ( ( I e. V /\ R e. Ring ) -> P e. Ring )
5 2 3 4 syl2anc
 |-  ( ph -> P e. Ring )